
Towards a Framework for Migrating Web Applications
to Web Services

Asil A. Almonaies Manar H. Alalfi James R. Cordy Thomas R.Dean

School of Computing, Queens University
Kingston, Ontario, Canada

{asil,alalfi,cordy,dean}@cs.queensu.ca

Abstract

Migrating traditional legacy web applications
to web services is an important step in the
modernization of web-based business systems
to more complex inter-business services and in-
teractions. While the problem of migrating
various kinds of legacy software systems to a
service oriented architecture (SOA) environ-
ment has been well studied in the literature, ap-
proaches to migrate dynamic web applications
to web services are lacking. In this paper we
outline the requirements for a semi-automated
approach to migrate dynamic legacy web appli-
cations to web services-based SOA applications
while preserving the original web application’s
business processes. A manual demonstration
of our approach is presented using two exam-
ples from Moodle, a popular open source course
management system. The migration process is
guided by three goals: user interface plasticity,
code refactoring and load balancing.

1 Introduction

There are a number of different approaches in
the literature to migrate various kinds of legacy
software systems to a service oriented archi-
tecture (SOA) environment [20, 10, 9, 21, 4].
However, approaches to migrating web appli-
cations to web services are lacking [2]. Many
legacy web applications are implemented us-

Copyright c� 2011 Asil A. Almonaies, Manar H. Alalfi,

James R. Cordy, and Thomas R.Dean. Permission to

copy is hereby granted provided the original copyright

notice is reproduced in copies made.

ing scripting languages such as PHP [3] or
Python [7]. These languages are dynamically
typed, reflexive and support dynamic changes
to the code. In addition, PHP only fully sup-
ported object oriented programming in version
5 [16]. The continuing evolution of these ap-
plications has resulted in implementations in
mixed programming paradigms. For instance,
while some modules in moodle are built us-
ing the object oriented paradigm, other mod-
ules are non object oriented, while others mix
the two paradigms in interesting ways. This
mixture of highly dynamic applications mixed
paradigms, and the multilingual code bring the
challenge to the analysis and refactoring of
legacy web application systems for the purpose
of migrating them into SOA. To the best of our
knowledge this work is the first effort to address
these type of applications.

An additional challenges in modernizing a
legacy system is the identification of the suit-
able set of services in the legacy code that have
business value. We believe that the need for
tools and techniques for analyzing large source
code bases to uncover and expose the code that
implements business value as services is a cru-
cial area of practical research. These tools and
techniques needs to take into consideration the
unique characteristics of legacy scripting based
web application, and this is one of the purposes
of our work.

Web applications can be defined as the set of
web pages (.aspx, .jsp, and HTML files), han-
dlers, modules, executable code, and other files,
such as images and configuration files, that can
be invoked from a web server. Currently, web
applications are facing new challenges, such as

Figure 1: The Proposed Approach

the ability to manage complex processes across
multiple users and organizations, to intercon-
nect software provided by different organiza-
tions, and the ability to create complex com-
bined business scenarios.

To address these challenges, web services can
be used as an enabler technology that provides
system-to-system interaction and permits the
implementation of business constraints using
process control primitives to more easily adapt
to these new requirements [6]. The migration
of traditional legacy web applications to web
services is therefore an important step in the
modernization of web-based business systems
for the new world of complex inter-business ser-
vices and interactions.

Using web Services and SOA it is possi-
ble to design and build web-based systems
and applications using independent, hetero-
geneous, network-addressable software compo-
nents. SOA organizes the computer software
into a collection of separate services that com-
municate with each other. It focuses on a loose
coupling of the integrated elements, using a set
of enabling technologies provided by web ser-
vices such as XML, Simple Object Access Pro-
tocol (SOAP) [25], Web Services Description
Language (WSDL) [26] and Universal Descrip-
tion Discover and Integration (UDDI) [14] to
achieve flexibility and agility. Using SOA, un-
necessary dependencies between systems and

software elements are minimized, while main-
taining functionality. Service-oriented archi-
tecture can help to close the gap between IT
professionals and the business professionals in
an organization. It also reduces costs and in-
creases return on investment because it focuses
on the concept of reusability. A primary reason
for its use is to improve business communica-
tion, so that the goals of the enterprise can be
more directly and readily realized.

The contributions of this paper are:

1. Exploring the issues of the migration of a
monolithic web application to SOA, lead-
ing to a future semi-automated migration
framework. The analysis and refactor-
ing of such system have a unique chal-
lenges due to the highly dynamic nature of
the legacy system, poorly structured code,
multilingual code and weakly typed lan-
guages.

2. A manual demonstration on the use of our
approach to migrate two of the most inter-
esting functionalities in Moodle, user au-
thentication and the file upload. Our mi-
gration process is guided by three goals:
user interface plasticity, code refactoring
and load balancing.

The remainder of this paper is organized as
follows. Section 2 describes our approach for

identifying and separating services. Section 3
describes our first case study and our initial ef-
forts to expose some of the functionalities of
the Moodle LMS [13] as web services. Section
4, reviews related work in migrating web appli-
cations to web services, and Section 5 summa-
rizes the present state and future directions of
our project.

2 Approach

In general, there are three goals when migrat-
ing to web services:

• User interface plasticity, which is the ca-
pacity of user interfaces to adapt, or to be
adapted, to the context of use while pre-
serving usability [5].

• Load balancing, which is a technique to
distribute the the workload evenly across
two or more computers, network links,
CPUs, hard drives, or other resources, in
order to get optimal resource utilization,
maximize throughput, minimize response
time, and avoid overload [23].

• Code refactoring, which is a disciplined
technique for restructuring an existing
body of code, altering its internal structure
without changing its external behaviour in
order to improve some of the nonfunctional
attributes of the software [11].

The proposed approach explores the area
of moving a dynamic monolithic web applica-
tion to SOA with significant levels of automa-
tion. The result can be considered as a service-
oriented web application that implements the
endpoints of a web service. The approach can
also be used to combine different sets of services
from two or more different web applications to
construct a new web service application which
behaves like the two original applications to-
gether.

The proposed approach (Figure 1) consists
of four main steps:

1. Identify independent services within the
web application. The main challenge in
modernizing any legacy system is finding
the business services in legacy code by

identifying business value in the large code
base. The first step in our approach is to
identify potential business services in the
web application.

2. Separate services in the original web appli-
cation (that is, break the web application
logic into separate services). In this step,
and because we are in the first instance mi-
grating PHP-based web applications, we
expect to use two technologies:

• Service Component Architecture
(SCA) [19], which provides an easy
way to create and access services
in PHP. It allows PHP scripts to
expose class functions as services and
allows class functions to access other
services regardless of whether they
are local to the current web server or
running on a different web server.

• Service Data Object (SDO) [19],
which provides a uniform PHP inter-
face for handling different forms of
data and provides a mechanism for
tracking changes in data regardless of
where the data resides.

3. Migrate the separated services to SOA
components. Deciding which services
should be selected is a major issue and it is
important to have a set of criteria in order
to determine the priority for choosing sep-
arated services to be included in the target
SOA to avoid the selection of redundant or
inefficient services.

4. The final step is the re-integration of
the selected services into a new service-
oriented application. The developed ser-
vices will be combined to provide the
original system functionality as a service-
oriented architecture. The result will be
an SOA implementation of the original
web application functionality.

The approach will be evaluated on an exist-
ing production open source monolithic web ap-
plication to demonstrate that the original ap-
plication can maintain its original functionality
when moved to a web services-based SOA ar-
chitecture using the approach.

Figure 2: SCA extension (taken from [15])

2.1 PHP SOAP Implementa-
tions: SCA

There are several technologies that offer exten-
sions for developing web services in PHP:

• NuSOAP: a group of PHP classes that
allow developers to create and consume
SOAP web services [18].

• PEAR: SOAP, and a SOAP Client/Server
for PHP [24].

• Service Component Architecture (SCA)
and Service Data Objects (SDO), which
are standards for enabling service-oriented
architecture. SCA and SDO are imple-
mented in several programming environ-
ments, such as Java, C++, and PHP[12].

In our approach we chose to use SCA and
SDO, because they are straight forward to in-
stall, adopt and understand. In addition, by
using the SCA extension, we are able to imple-
ment reusable services using composite refer-
ences. SCA also provides bindings other than

SOAP, such as XML-RPC, JASON-RPC, and
REST-RPC [19], making our results more flex-
ible. Figure 2 shows the implementation of
SCA in PHP. SCA and SDO consists of two
parts. The first part is a dynamic library that
extends the php interpreter module of the web
server. This extension library scans for anno-
tations given in comments to recognize a PHP
class as a web service. This is shown on the left
of figure 2. The annotation @service, shown
at the top of the file MyService.php designates
the class as a web service. The @binding an-
notation tells the extension which binding to
use for the web service. If ws is soap, then
the SOAP bindings is used for the web service.
One feature is that the WSDL descriptions are
automatically generated when the wsdl param-
eter is added to the invoking url (e.g. http :
//hostname/MyService.php?wsdl.

The second part of SCA and SDO for PHP
is a set of utility functions defined in the in-
clude file ��SCA/SCA.php�� used to find and
invoke SCA services. The SCA infrastructure
handles the invocation of other SCA services,

Login Service

Moodle Login:

Moodle provide a login page to all its users (administrator, teacher, student and guest), where a
user name and password are required (administrator, teacher, student) which their information
are checked against Moodle�’s database.

We applied code refactoring on the index.php file which is the main login page of Moodle in
order to provide us with the basic login functionality which is supplying a user name and a
password.

Functions are called in the three main Moodle libraries:

 lib/moodlelib.php : contains general stuff.
 lib/weblib.php -: related to output of HTML
 lib/dmllib.php �– related to getting data in and out of the database.

Function user_login($username, $password);

This is the primary function used to login users into Moodle. You can do what you need in this
function to finally return a boolean indicating the matching or mismatching of the given
username and password.

There are several authentication methods done in Moodle for our case study we will adapt the
manual authentication which Just do a simple check of the user name and password against the
Moodle database. (Should I mention the other authentication methods)?

Fig 2: The login hierarchy

auth.php

Index.php

authlib.php

Figure 3: Moodle’s login hierarchy

including those written in other implementa-
tion languages.

3 Case Study

We use Moodle [13], a popular open source
Course Management System (CMS) to explore
the issues in SOA migration. Moodle stands
for “Modular Object-Oriented Dynamic Learn-
ing Environment”. It allows teachers to create
online courses, which students can access as a
virtual classroom. A Moodle home page in-
cludes a list of participants (teacher and stu-
dents), a calendar with a course schedule, and
list of assignments. Other interesting features
include: online quizzes and forums, where stu-
dents can post comments and questions, glos-
saries of terms, and links to other web re-
sources.

Moodle users have four primary roles: ad-
ministrator, teacher, student, and guest. We
chose Moodle because it is widely used interna-
tionally, has good documentation and a strong
supporting developer community. While Moo-
dle exibits a plug-in architecture, it is accom-
plished using include files, classes and method
calls in a monolithic web application. Since
Learning Management Systems (LMS), which
provide Internet- based education, are becom-
ing very popular in academia, it is one of the
first approaches to provide web services for
LMS users using the SCA extension.

We investigate the issues of code refactoring
by investigation the migration of Moodle’s lo-
gin functionality to expose it as a service and of
user interface plasticity by investigating the file

upload service. There are some reusable and
reliable functions with valuable business logic
embedded in any legacy system. These func-
tions are useful to be exposed as independent
services.

While our work is aimed at automating the
extraction of the relevant functionality to be
selected as services, and in order to develop
such a capability we need first to understand
how this extraction can be done. In this first
experiment, we demonstrate the manual ap-
plication of our approach to the migration of
some of the interesting internal functionalities
of Moodle, such as the login process, that can
be reused. We have manually analyzed Moodle
in a top-down manner, dividing basic function-
alities into sub-functionalities in order to gain
insight into the application, and as a result we
have identified a number of potential indepen-
dent services.

3.1 Example 1: Login Process

Moodle provides a single login page to all
its users (administrator, teacher, student and
guest), where a user name and password are
required (administrator, teacher, student) and
their information validated before the user is
allowed to continue. The code that generates
and processes page is in login/index.php, rel-
ative to the Moodle base directory. Login is
thus the first functionality we have identified
as a potential service.

�����
�������	
��������������
��������
����
��	�����	����
�����������

����
�������� ��!���"#��$�%�$&'(�)�**��+�$��,
������������	�����-
������
��	�������
����-���-���
����.���/��,
�������	/���*���0'�$!�	/���-��)�
��������1���*���0'�$!���//1����)�
������
������
��	/��2��1����,
��������������3'4!�	/���-��)�*��	/���
��������
��	�������
�/	���//���-���
������.���/��,
��������
��	�������
���
����-���
������.
����.

�5

Figure 4: Simplified login/index.php page

�����
����	
��������������
��������
�
��	�����	�����	���������

��	��
�����
��	�����
�������
����������������
 � ����� ����
��������	����
���
��������
�������������������
�	���
���
���

���������	���!��"��	�����	������
���������	�����	���#$����
��	������
���%
�$

Figure 5: Authentication Code

3.1.1 Moodle’s Login Identification

Moodle’s login functionality is already struc-
tured as multiple plugins which are provided
using an factory routine that chooses the cor-
rect login method based on configuration in-
formation. While one approach provides a new
plug-in for an SOA method, we instead choose
to investigate migrating one of the existing
plug-ins to an SOA environment. We start ana-
lyzing the code manually to identify the candi-
date functionalities. We have identified several
of the authentication plugins used in Moodle:

• Manual authentication : accounts are cre-
ated manually by an administrator.

• Email authentication: accounts are cre-
ated manually by the users.

• LDAP authentication: accounts informa-
tion are on external Lightweight Directory
Access Protocol server.

• Nologin authentication: accounts are sus-
pended.

We choose to investigate the first option,
manual authentication which does a simple
check against the Moodle database. This func-
tionality is spread over the following php pages:

• login/index.php : which is the default login
page.

• lib/moodlelib.php: contains the func-
tion authenticate user login() called by in-
dex.php which get the list of all the en-
abled authentication plugins.

• lib/auth/manual/auth.php: contains the
manual authentication.

• lib/authlib.php: contains all the authenti-
cation plugins types.

�����
����	��
�����������	��������

���������
��������
������	������	�������������������� ��
�������!�� "��������� ��

���������#!�$%&%'(�)�*+,-�� �
���������������
����������������!.���������.��� �������� !.��.��
�����������!�#���
����#������#��
���������#���
���������
��������!�#���
���
��������������

����	������!!/�������	��������01������� �!!���
�������������������
����2�������
������������������
����2
��2
2

�1

Figure 6: Manual authentication module

The Moodle login logic hierarchy is as shown
in (Figure 3). From the above authentication
methods supported by Moodle, we will adapt
the manual authentication method, which just
does a simple check of the user name and pass-
word hash against the Moodle database.

3.1.2 Moodle’s Login Refactoring

We begin with the Moodle login page in lo-
gin/index.php which is responsible for display-
ing the form that allows the Moodle users to
enter their information. It also includes the
authentication code that uses the function lo-
gin which takes two parameters; the username
and password. We have produced a simplified
version of the login code to illustrate the differ-
ences shown in figure 4.

Figure 5 shows the simplified code in au-
thenticate.php. In Moodle, this is an factory
method that instantiates the class that imple-
ments the login method given in the configu-
ration file and invokes the login method. We
have simplified to code to instantiate and call
the class that implements the manual method
of user authentication.

Figure 6 shows our simplified version of the
original manual authentication code. While
simplified it still reflects the basic function-
ality of Moodle’s manual method. The user
password is hashed using md5 and the values
are checked in the internal Moodle database.

If there, the function returns true, otherwise
false.

3.1.3 Moodle’s Login New Service

In this case the migration to SOA is straight-
forward. We create a copy of the original code
with a new name (file and class name must
match in php). We add the include statement
for the SCA library, and annotations for the
class and method. This includes the @service
and @binding.soap annotations for the class,
and the parameter and result annotations for
the login method. This enables the class as a
remote service.

The original class is replaced by a wrapper as
shown in figure in (Figure 8). The PHP version
of SCA automatically generates a WSDL file if
the php file is invoked remotely with the wsdl
parameter. Thus the wrapper starts by gen-
erating a WSDL file from the remote service
and saving it locally (production code cache
the WSDL file). This file is then used to in-
stantiate the service and then call the remote
service. The result of the service is returned to
the calling function (i.e. login).

Thus authenticating a user from lo-
gin/index.php is accomplished by calling the
factory login routine in authenticate.php. The
factory routine instantiates the wrapper class
in authmanualSOA.php and invokes the login,
which in turn calls the remote service.

�����
����	��
�����������	��������
	��������������������
���
�
������ 	�
�
���!	��	�����"�
�
��
�"���"�#�
$"��"��%�&��$�#��'
���
���"�"$��#�	���(�����"$�
�
���"�"$��#�	���(�"��)���
�
����#����!����"�
��
���#	������	��(�����"$�*(�"��)����'
(��+�$�,�(�"��)�����
(����-+���./.�0���12%3�$��
�����)����������"$�+�(�����"$���"����"��)���+�(����
�
�

4
�5

Figure 7: Remote Version of Manual Authentication

�����
����	��
�����������	��������
	��������������������
���������
 ������!�"�#
����	������	��$�%$��#
$��&��	��
���
�������������'���	���������������� ���������	������
 ������!�"�� ��������(������
�	��
���
�������������
 ������!�"�� ����(����%$���
$���)	��&����''������)	���������
 ������!�"�� ����(������
$�������&�$���)	�*+���	��$�%$���
�������$�������
,

,�+

Figure 8: Wrapper Class to Call Remote Service

3.2 Example 2: File Handling

As a course management system, Moodle pro-
vides a facility to allow users with the teacher
role (i.e. professors, TA’s) to provide files for
students to download. The file functionality in
moodle allows teachers to upload, organize, re-
name, delete and generate zip archives of the
files.

In this experiment we focus on converting the
file uploading functionality to a service. Once
converted to a service, the Moodle’s multi-page
based file management interface can be con-
verted to a more interactive Ajax interface.
Thus the objective of this activity is user inter-
face plasticity. As with the login functionality,
the base logic of the file management function-

ality is located in files/index.php in the Moodle
directory.

3.2.1 Moodle’s File Uploading Identifi-
cation

The main code of the file module is located
in files/index.php. There are also several li-
brary files used to implement file uploading,
adminlib.php (which contains functions that
is used by the administrators), filelib.php and
file.php(which contain functions for analyzing
file content and file types), and uploadlib.php
which contains the class that manages the up-
load functionality. What makes this more dif-
ficult is that presentation logic and file man-
agement is spread throughout the upload class.

�����
�����		�
��������������
�����������	�
��������������

�������������������
�

�
�������
�����������������
����������������������	����	��������������	���	����	�������
�	���
���
�����������
����������	�������� ��	�!���	���������	��������"�
������	��������"�
���
���������
�#��

�
�

$

�
��������������������%�����#��
���������� ������##��
�����
������	��
$
����&�	
�����������������'���������(#�))������'�	�*��(����!#��

���������
+,,�-���	�������������	����������	����������������� �,+
�
�������	�������	����	��������#��

�����������������������
��������
����������������	 .����	'��('���������(�����	����������+������	 .����	'��('������(##��� �

���������	�����������+�������	 .����	'��('������(���/01 .�������� �����		���	#�� �

����	 .����	'��('��
�������(������	����������+������	 .����	'��('������(�� �

����	 .����	'��('�
���������(����23�2����	�������
������������#��

����	 .����	'��('�	�����(�����
���

��4�������	'(�������	 .����	'��('������(��

�
�

�.

Figure 9: The Moodle upload manager

�����
����	��
������������
���
�
��
��
��������
����
������
�
�	��
�
�
�����	��
��
�����
����������	��

���
!���"�����
���
!�	�������
���
!�	������#�
�����	��
�����	��$%

!���"����
&
!"'()*�+��	���,+����"�����,�
�
!�	������
&
!"'()*�+��	���,+������,�
!�	������#
&
-�������-�
	�
$	�"��������"�	��$!���"����%%

	�
$����"��������"�	��$!���"����.!�	������#
�
!�	������%%

������
-'	��
��������
�����������#-�
/
����
������
-'	��
������	�0
'�	���-�
/
/
����

������
-�����-�

�
�
�

�1

Figure 10: The uploadservice.php

For example the upload manager generates
HTML directly to the user when it encounters
errors, either in the format or content of the
files, or in file management.

The method move uploaded file(string $file-
name,string$directory) of uploadlib.php is used
to check the validity of the file (file type, ab-

sence of malware, etc.) which is uploaded via
an HTML form. If it is valid then it is moved
to the destination directory (Figure 9).

3.2.2 Moodle’s File Uploading Refac-
toring and New Service

The file management routines from the library
are collected into a single class and converted
to a local service. Figure 10 shows the movefile
method of the class. The upload manager class
is then converted to call the SOA functions.
The collection of the file management code into
a service separates the management of the files
from the generation of the error messages.

4 Previous Work

Service-oriented architecture (SOA) migration
is an architectural migration from any non-
SOA system to a system that follows the
service-oriented architecture principles, in or-
der to achieve a new maintainable service-
oriented architecture implementation of the
system. The major benefits of adopting service
oriented architecture as a design framework is
the ability to realize rapid and low-cost system
development, to improve overall system qual-
ity, and to better enable integration with other
systems.

Several methods in the literature studied the
problem of migrating traditional legacy system
to web services. We discuss some of them here,
and for a comprehensive discussion of other ap-
proaches, interested user can refer to our previ-
ous work [2], in which we present a comparative
study of modernization approaches for leverag-
ing /exporting legacy systems to SOA.

Aversano et al. [4] present a case study
in which a COBOL system is migrated to
web-based service oriented architecture. The
legacy system is divided into user interface and
server (application logic and database). The
user interface has been migrated into a web
browser shell using Microsoft Active Server
Pages and the VBScript scripting language,
and the MORPH approach has been used to
map the components of the existing interface
into the new web based interface. While the
server has been wrapped and integrated into
the new web-enabled system with dynamic
load libraries written in Microfocus Object
COBOL, loaded into Microsoft Internet Infor-
mation Server (IIS), and accessed by the ASP
pages.

H. M. Sneed and S. H. Sneed [21] discuss a
tool-supported method, where the legacy code
is a COBOL program wrapped behind an XML
shell allowing individual functions within the
programs to be offered as web services to any
external user.

Smith [20] and Lewis et al. [10, 9], dis-
cuss a migration technique called the Service-
Oriented Migration and Reuse Technique
(SMART). It is a technique that helps or-
ganizations analyze legacy systems to decide
whether their functionality can be reasonably
exposed as services in a service-oriented archi-
tecture.

Little work has been done to migrate web
applications to SOA. A sample of such efforts
is the work done by Tatsubori and Takash [22].
The authors present a framework named H2W,
which can be used for constructing web service
wrappers for existing, multi-paged web appli-
cations. H2Ws contribution is mainly in its
service extraction step. The authors propose
a page-transition-based decomposition model
and a page access abstraction model with con-
text propagation. With the proposed decompo-
sition and abstraction, developers can flexibly
compose a web Service wrapper of their intent
by describing a simple workflow program. In
[8] the paper discusses how web services can be
used to leverage web applications in a similar
way in general.

Vijaya and Rajan [17] focus on exploring
web services features, how they could effec-
tively shape the e-learning process, and ad-
vantages and compromises for the migration
from traditional distributed application devel-
opment to web services enabling technology.
Mainly they explore the benefits of converting
to web services, without introducing any spe-
cific approach to conversion. Most of the work
done in this area is similarly general, where the
focus is on discussing the benefits of using web
services to leverage web application, without
introducing a full framework for addressing the
problem.

The work done by Ajlan and Zedan [1] is to
introduce web services to Moodle. The focus of
the paper is to expose the assignment module
of Moodle as web services. UML diagram (col-
laboration diagram) is used to analyze it and
to capture the necessary information needed to

expose the assignment module as web services.
Furthermore, NuSOAP is used to create and
consume web services. The goal of our paper
is to introduce an approach for moving legacy
web application to web services in a service-
oriented architecture.

5 Conclusion and Future
Work

The proposed approach represents a new ap-
proach to the problem of migrating legacy sys-
tems to service-oriented architecture. It is one
of the first approaches to explore the area of
moving a monolithic web application to SOA,
and the first with a complete approach and sig-
nificant levels of automation. We presented
a simplified version of the Moodle login as a
service, which we were able to successfully au-
thenticate users into Moodle by checking the
username and password provided against the
Moodle database.

As future work, we will expose the file up-
loading functionality via SOAP protocol . Also
we will choose more functionality to be exposed
as services within Moodle to achieve the user
interface plasticity and load balancing goals re-
spectively. We analyzed both functionalities in
order to identify the potential service within
each function, which is done manually at this
stage. We are also going to automate the ser-
vice identification process by applying TXL.

In addition, as a demonstration of the flex-
ibility of the results of the approach, we will
combine the services extracted from two dif-
ferent web applications. This will demon-
strate a new hybrid system that uses mixed ex-
tracted services from the applications to offer
new higher-level business functionalities that
use the services of both.

Acknowledgements

This work is supported in part by the Natural
Sciences and Engineering Research Council of
Canada and by an IBM Center for Advanced
Studies Faculty Fellowship.

About the Authors

Asil Almonaies is a PhD candidate in the
School of Computing at Queen’s University
working under the supervision of Profs. James
Cordy and Thomas Dean. She received her
M.Sc. and B.Sc in Computer Engineering from
Kuwait University. Her research interests are
in the area of software engineering, focusing on
web applications, web services, service-oriented
architecture, and legacy systems migration.

Manar Alalfi is a postdoctoral fellow in the
Software Technology Laboratory of the School
of Computing at Queens University, working
with Prof. James Cordy. Dr. Alafi received
her Ph.D. from Queens University in 2010. Her
major specialization is software engineering, fo-
cusing on security analysis in web applications,
studying types of web application vulnerabil-
ities and proposing and developing techniques
to harden software systems to survive malicious
attacks. Her other research interests include
service oriented architecture and model driven
engineering for automotive systems.

James Cordy is Professor and past Director
of the School of Computing at Queens Univer-
sity. From 1995-2000 he was vice-president and
chief research scientist at Legasys Corporation,
a software technology company specializing in
legacy software system analysis and renovation.
As leader of the TXL source transformation
project he is the author of more than 130 ref-
ereed contributions in programming languages,
software engineering and artificial intelligence.
Dr. Cordy is an ACM Distinguished Scientist,
a senior member of the IEEE, and an IBM CAS
visiting scientist and faculty fellow.

Thomas Dean is an Associate Professor in
the Department of Electrical and Computer
Engineering at Queens University and an Ad-
junct Associate Professor at the Royal Military
College in Kingston. His background includes
research in air traffic control systems, language
formalization, and five and a half years as a
Sr. Research Scientist at Legasys Corporation
where he worked on advanced software trans-
formation and evolution techniques in an in-
dustrial setting. His current research interests
are software transformation, web site evolution
and network application security.

References

[1] A. Ajlan and H. Zedan. E-learning (MOO-
DLE) Based on Service Oriented Architec-
ture. In the EADTU’s 20th Anniversary
Conference, Lisbon, Portugal, 8-9 Novem-
ber, Lisbon-Portuga, pages 62–700, 2007.

[2] A. Almonaies, J.R. Cordy and T.R. Dean.
Legacy System Evolution towards Service-
Oriented Architecture. In International
Workshop on SOA Migration and Evolu-
tion, pages 53–62, 2010.

[3] Mehdi Achour, Friedhelm Betz, Antony
Dovgal, Nuno Loopes, Hannes Magnus-
son, Georg Richter, Damien Seguy, and
Jakub Vrana. PHP Manual. http://www.
php.net/manual/en/index.php, last ac-
cessed Aug 2011.

[4] L. Aversano, G. Canfora, A. Cimitile, and
A. De Lucia. Migrating legacy systems to
the web: an experience report. In Pro-
ceedings of Fifth European Conference on
Software Maintenance and Reengineering,
pages 148–157, 2001.

[5] Joëlle Coutaz. User interface plasticity:
Model driven engineering to the limit! In
2nd ACM SIGCHI Symposium on En-
gineering Interactive Computing Systems,
pages 1–8, 2010.

[6] Dieter Fensel and Christoph Bussler. The
Web Service Modeling Framework WSMF.
Electronic Commerce Research and Appli-
cations, 1:113–137, 2002.

[7] G. Van Rossum. Python programming
language. http://www.python.org/, last
accessed Aug 2011.

[8] K. Dezhgosha and S. Angara. Web ser-
vices for designing small-scale Web appli-
cations. In the 2005 IEEE International
Conference on Electro Information Tech-
nology, 4 pages, 2005.

[9] G. Lewis, E. Morris, L OBrien, D. Smith,
and L. Wrage. Smart: The service-
oriented migration and reuse technique.
In Proceedings of the 13th IEEE Interna-
tional Workshop on Software Technology

and Engineering Practice, pages 222–229,
2005.

[10] G. Lewis, E. Morris, and D. Smith. An-
alyzing the reuse potential of migrating
legacy components to a service-oriented
architecture. In In Proceedings of the
Conference on Software Maintenance and
Reengineering, pages 15–23, 2006.

[11] Martin Fowler. Refactoring: improving the
design of existing code. Addison-Wesley
Longman Publishing Co., Inc., Boston,
MA, USA, 1999.

[12] Caroline Maynard, Graham Char-
ters, Matthew Peters, and Simon
Laws. SCA/SDO for PHP. http:
//pecl.php.net/package/SCA_SDO, last
accessed Aug 2011.

[13] Moodle Trust. Moodle. http://Moodle.
org, last accessed October 2010.

[14] OASIS. UDDI Version 2.03 Data
Structure Reference. http://www.
uddi.org/pubs/DataStructure-V2.
03-Published-20020719.htm, last
accessed September 2010.

[15] Open SOA Collaboration. SOA PHP
Homepage. ihttp://www.osoa.org/
display/PHP/SCA+with+PHP, last ac-
cessed Aug 2011.

[16] Php.net. PHP 5 ChangeLog. http://
www.php.net/ChangeLog-5.php, last ac-
cessed Aug 2011.

[17] Amala Vijaya Selvi Rajan and Jim Otieno.
Leveraging traditional distributed applica-
tions to web services for e-learning appli-
cations. In 15th International Workshop
on Database and Expert Systems Applica-
tions, pages 430–435, 2004.

[18] Scott Nichol. Introduction to Nu-
SOAP. http://www.scottnichol.com/
nusoapintro.htm, last accessed Septem-
ber 2010.

[19] Simon Laws. SCA with PHP.
http://www.osoa.org/display/PHP/
SCA+with+PHP, last accessed September
2010.

[20] D. Smith. Migration of legacy assets
to service-oriented architecture environ-
ments. In Proceedings of the 29th Interna-
tional Conference on Software Engineer-
ing, pages 174–175, 2007.

[21] H. M. Sneed and S. H. Sneed. Creating
web services from legacy host programs.
In Proceedings of the Fifth IEEE Interna-
tional Workshop on Web Site Evolution,
pages 59–65, 2003.

[22] Michiaki Tatsubori and Kenichi Takashi.
Decomposition and abstraction of web ap-
plications for web service extraction and
composition. In IEEE International Con-
ference on Web Services, pages 859–868,
2006.

[23] TechGuruLive. What is a hard-
ware load balancer? http:
//techgurulive.com/2011/01/17/
what-is-a-hardware-load-balancer/,
last accessed October 2010.

[24] The PHP Group. Package Information:
SOAP. http://pear.php.net/package/
SOAP/redirected, last accessed Septem-
ber 2010.

[25] W3C. Simple Object Access Protocol
(SOAP) Version 1.2. http://www.w3.
org/TR/soap12, last accessed September
2010.

[26] W3C. Web Services Description Language
(WSDL) Version 1.1. http://www.w3.
org/TR/wsdl11, last accessed September
2010.

