
An Empirical Framework for Comparing Effectiveness of
Testing and Property-Based Formal Analysis ∗

Jeremy S. Bradbury, James R. Cordy, Juergen Dingel,
School of Computing, Queen’s University, Kingston, Ontario, Canada

{bradbury, cordy, dingel}@cs.queensu.ca

ABSTRACT
Today, many formal analysis tools are not only used to pro-
vide certainty but are also used to debug software systems
– a role that has traditional been reserved for testing tools.
We are interested in exploring the complementary relation-
ship as well as tradeoffs between testing and formal anal-
ysis with respect to debugging and more specifically bug
detection. In this paper we present an approach to the as-
sessment of testing and formal analysis tools using metrics
to measure the quantity and efficiency of each technique at
finding bugs. We also present an assessment framework that
has been constructed to allow for symmetrical comparison
and evaluation of tests versus properties. We are currently
beginning to conduct experiments and this paper presents
a discussion of possible outcomes of our proposed empirical
study.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-
bugging; D.2.8 [Software Engineering]: Metrics

General Terms
Verification, Experimentation.

Keywords
bug detection, empirical software engineering, model check-
ing, mutation testing, static analysis.

1. INTRODUCTION
Testing and formal analysis are two complementary qual-

ity assurance techniques. Testing can be lightweight but

∗This work was supported by the Natural Sciences and En-
gineering Research Council of Canada (NSERC)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASTE’05 Lisbon, Portugal
Copyright 2005 ACM 1-59593-239-9/05/0009 ...$5.00.

incomplete while formal analysis tends to be more heavy-
weight but complete. Our interest in exploring the comple-
mentary relationship between testing and formal analysis is
motivated on the one hand by advances in the theory and
practise of formal analysis and on the other hand, by a need
for improved quality assurance techniques for industrial code
– especially concurrent code.

A shift in the focus of formal methods from proofs of cor-
rectness to debugging and testing has been advocated by a
number of researchers including Rushby [15]. An example of
this shift is demonstrated by the approximately a quarter of
a million assertions in the Microsoft Office code [8]. The pri-
mary application of these assertions is “...not to the proof of
program correctness, but to the diagnosis of their errors” [8].
In recent years, tool development in the formal analysis com-
munity has matured and the current generation of tools are
automatic, scalable, and only leave a small semantic gap be-
tween the source artifacts used by developers and the model
artifacts required for analysis. For example, in the SLAM
project automated refinement allows for direct static anal-
ysis of device driver source code [3]. The ability to directly
analyze source code and the increase in size of systems that
can be analyzed has helped formal analysis become a vi-
able option for software debugging. For example, in many
formal analysis tools a counter-example is produced if the
verification of a property fails. When a counter-example is
produced it can be used to locate the error in source code.
Intuitively, the detection of a property or assertion viola-
tion, such as a violation of a method pre-condition, a loop
invariant, a class representation invariant, an interface us-
age rule, or a temporal property should be more insightful
than simply knowing that there was a failure of a possibly
global test case.

The majority of software systems currently developed in
industry are single-threaded sequential programs [16]. How-
ever, there is mounting evidence that “applications will in-
creasingly need to be concurrent if they want to fully ex-
ploit CPU throughput gains that have now started becom-
ing available and will continue to materialize over the next
several years” [16]. The shift from sequential to concur-
rent systems provides an opportunity for the application of
formal analysis techniques which can often succeed at de-
bugging concurrent systems while testing in this setting is
often insufficient or impractical.

We believe that the property-based formal analysis tools
that are now available offer the potential to substantially
aid in the debugging of industrial concurrent code. In this
paper we present an assessment framework to empirically



evaluate and identify the tradeoffs between formal analysis
and testing with respect to bug detection. Our goal is to use
the assessment framework to answer several open questions
that have not been addressed in previous research:

• How good is property-based formal analysis at finding
bugs in source code?

• How efficient is a formal analysis technique at find-
ing bugs in comparison to testing or in comparison to
another formal analysis technique?

• Can a hybrid approach that combines formal analysis
and testing ever find more bugs or be more efficient
than either approach used in isolation?

Furthermore, we hope to use our framework and future em-
pirical results to identify ways to integrate formal analysis
and testing to better aid in debugging software.

2. PROPOSED EXPERIMENTAL STUDY
The goal of our proposed study is to statistically evaluate

test suites and sets of formal properties using metrics to
determine both the quantity of bugs found and the efficiency
of each approach. We will outline our experimental setup
and procedure before discussing possible research outcomes.

2.1 Experimental Setup
Selection of Metrics. We will use mutation testing met-

rics [2] to assess the quantity of bugs found. Mutation test-
ing uses mutation operators to generate faulty versions of
the original program called mutants. If we assume the orig-
inal program as being correct then a mutant version that
is non-equivalent can be thought of as having a bug. The
percentage of non-equivalent mutants detected (killed) by a
test suite or property set is the mutant score. We have cho-
sen to use a mutation metric because a recent study found
that mutant faults were a good measure of real faults [2].

To evaluate the efficiency of testing and formal analysis at
finding bugs we record the overall cost of executing the test
suite and verifying the property set. Additionally, we record
the time to run each test case and verify each property and
then average the time over the number of mutants killed by
each to determine the cost to kill each mutant.

Selection of Testing and Formal Analysis Techniques.
In our experiments we plan to evaluate existing test suites
and properties. We want to evaluate properties using analy-
sis tools that satisfy the following characteristics: ability to
take source code of a modern programming language such as
C/C++ or Java as input, ability to analyze a program with
respect to a set of properties, and the ability to produce a
counter-example if a property is not satisfied. We also want
tools that are lightweight, scalable, and automatic because
we want formal analysis to be a viable and practical com-
plement to testing even in industrial settings.

Our set of criteria suggest the use of static analysis tools
which are scalable but incomplete. After considering a num-
ber of tools we decided to assess one formal static analysis
tool in our first experiments – Path Inspector [1], a plug-in
for GrammaTech’s1 CodeSurfer that can analyze sequential
C/C++ source code. In Path Inspector the user can spec-
ify sequencing properties based on temporal logic property

1GrammaTech home page: http://www.grammatech.com

patterns [5]. For example, one type of property is “P oc-
curs globally” where P can be any program point (e.g. a
function call). A property in Path Inspector is verified by
analyzing the control flow graph of the system. If the prop-
erty is not satisfied a counter-example is displayed. Since
Path Inspector is incomplete spurious results are possible
because some of the paths in the control flow graph maybe
infeasible during execution.

Although our criteria suggest the use of static analysis
tools, other techniques traditionally associated with formal
analysis (e.g., model checking, theorem proving) could also
be used provided they satisfy the criteria. In the future we
plan to run experiments using the model checker Bogor [13].
Bogor includes a plug-in called Bandera which allows for
the analysis of Java programs using Linear Temporal Logic
(LTL) properties or assertions. The benefits of using Bo-
gor are the analysis is complete and spurious results are not
possible2, and concurrent programs as well as sequential pro-
grams can be analyzed. In addition to Bogor, tools based
on automatic abstraction refinement (e.g., SLAM, Magic,
Blast) could be used.

Selection of Example Programs, Test Suites, and
Property Sets. In selecting example programs to use we
are limited in size by the scalability of the formal analysis.
We have tried to find example programs that have a mature
test suite and an existing property specification. Unfortu-
nately, it is difficult to find suitable real-world source code,
and even more difficult to find examples with a mature test
suite and property specification. Therefore, for the purpose
of our experiments we had to consider examples with no
preexisting tests or properties.

To start, we will use a set of small programs created by
Siemens [6, 10, 14] that include a pattern replace program,
priority schedulers, lexical analyzers and others. The sample
programs are written in C, which will allow us to evaluate
properties in Path Inspector. Each program has existing
test suites, some that provide branch coverage and others
that are generated at random. These programs do not have
existing temporal logic properties that can be evaluated in
Path Inspector. As a first step we plan to generate prop-
erties randomly and compare them to randomly generated
test suites. We also plan to hand-craft a set of properties for
comparison with more sophisticated and mature test suites.

In addition to the Siemens programs, we plan to run our
experiments on several other programs involving standard
data structures and sorting routines.

2.2 Experimental Procedure
To support the experimental procedure we have developed

an assessment framework with a high-degree of automation
to allow for a large number of experiments to be carried
out as efficiently as possible. Our assessment framework
(see Fig. 1) essentially consists of a Java application that
acts as a wrapper to all of the other tools and scripts used.
The framework is generic enough to allow for the compari-
son of testing with formal analysis using Path Inspector or
a model checker such as Bogor. However, for simplicity we
will only explain the assessment framework in the context of
comparing testing with formal analysis using Path Inspec-

2Spurious results may occur in Bogor if abstraction is used
in the Bandera translation from Java to BIR(the Bogor mod-
eling language).



tor. When comparing testing with Path Inspector analysis
the framework requires as input a C/C++ program and an
accompanying test suite and property set. Once the inputs
have been selected, the framework implements the four main
steps of the experimental procedure:

1. Mutant generation: A built in set of mutation opera-
tors can be selected individually to allow for the gener-
ation of mutant C/C++ programs to be customized.
In the future we also plan to add new mutation op-
erators depending on the domain. For example, in
a concurrent programming domain we might adapt a
general re-order statements mutation operator to only
re-order statements from inside to outside a critical
region and vice versa.

2. Formal Analysis: Our application calls an automat-
ically generated script which allows all of the formal
analysis to be performed automatically. For our set
of properties we first evaluate each property using the
original program to determine the expected outputs.
Next, we evaluate our property set for all of the mutant
versions of the original program. During formal anal-
ysis all of the verification results, generated counter-
examples, and analysis execution times of each prop-
erty with each program are recorded.

3. Testing: Our application calls an auto-generated script
which compiles the source code and executes the test-
ing, recording the output result and execution time for
each test case with each program.

4. Collection and display of results: We compare the ex-
ecution and verification results of the original program
with the results of executing and verifying the mutant
programs to see if each test case and property was able
to distinguish the mutant programs from the original
(see Table 1).

The current status of the assessment framework is that we
have implemented the mutation, testing, and formal analy-
sis and are currently completing the display of results. We
are also working to make the framework more customizable
and flexible to support a wide range of experiments using
different programs, languages, tools, and properties. For
example, we would like to compare different formal anal-
ysis techniques (e.g. Path Inspector vs. model checking)
and compare different types of properties (e.g. assertions
vs. LTL properties).

 Assessment Results Reported by the Framework 

T
es

ts Mutant score for each test case/test suite 

Execution cost for each test case/test suite 

Number of test cases that kill each mutant 

P
ro

p
er

ti
es

Mutant score for each property/property set 

Execution cost for each property/property set 

Number of properties that kill each mutant 

Mutant score for each property pattern type 

Types of mutants killed by each property pattern type 

In
te

g
ra

ti
n

g
 t

es
ts

 

&
 p

ro
p
er

ti
es

 Hybrid set of tests and properties that achieve the 

highest mutant score 

Hybrid set of tests and properties that achieve a certain 

mutant score (e.g. 90%) and 

o has the lowest execution cost 

o has the smallest set of tests and properties

Table 1: Types of results collected and reported

Formal

Analysis

Tool

Mutation

Testing

Scripts

TXL Mutant Generators

PropertiesProperties
Test Cases

PropertiesProperties
Properties

Assessment

Framework

(Java

wrapper)

Collection and Display of Results

Original

Source Code

ROR SDL ABS. . .

Mutant

Source Code

Assessment Results

Database

Figure 1: Assessment framework

2.3 Possible Outcomes
We are currently completing the results reporting and

therefore we can only discuss possible outcomes that are
based on preliminary results. These results involve one pro-
gram using Path Inspector and one program using Bandera
in combination with a standard model checker. Both pro-
grams were evaluated using a small set of properties and
mutant operators. Based on our preliminary results we be-
lieve that further experimentation will show that in certain
cases formal analysis can find bugs that testing can not find
and vice versa. For example, in a concurrent setting testing
may not be able to find certain bugs at all, while formal anal-
ysis can. Moreover, we suspect that formal analysis using
Path Inspector is not as beneficial as testing when it comes
to finding bugs in conditional expressions (e.g. incorrect re-
lational operators) because of the imprecision inherent to
static analysis.

In terms of efficiency, one possibility is that we will find
that formal analysis can be as efficient or better than test-
ing in certain cases. For example, if a given property kills
a number of mutants that are normally killed by a set of
test cases, it is possible that sometimes the execution time
for verifying the property is less than the time required to
run the test cases. If this is the outcome of our research
then an optimal quality assurance approach with respect
to execution cost might be hybrid and include both formal
analysis and testing. If the outcome is that testing is al-
ways more efficient then formal analysis with a given tool
we would still like to know by what factor is it more efficient
because the analysis of the properties might still provide in-
creased insight to developers that can be factored against
its increased cost. Therefore, we would also like to know the
kinds of properties that kill mutants and see if they have
other benefits for developers in addition to finding bugs.

3. RELATED WORK
Mutation testing has been used in the testing community

for over 25 years and has proven to be a useful compari-
son metric for assessing and improving multiple test suites.
Unlike test suite assessment, property assessment with re-
spect to source code does not appear to be well researched.



PropertiesProperties
Test Cases

Test Suite

Optimization

Component

Property Set

Optimization

Component

PropertiesProperties
Properties

Original

Source Code

Assessment Results

Database

TXL Mutant Generators

Formal

Analysis

Tool

Mutation

Testing

Scripts

Collection and Display of Results

Assessment

Framework

(Java

wrapper)
ROR SDL ABS

. . .

Mutant

Source Code

Assessment Framework

Figure 2: Future directions – extending the assess-
ment framework to include optimization

Instead, properties are often assessed with respect to an ab-
stract model of the code (e.g. finite state machines(FSMs),
first-order logic). The use of mutation metrics in formal
analysis primarily occurs at the model level. For example,
mutation metrics have been used to assess state-based cov-
erage of FSMs in model checking [9]. The previous uses of
mutation in formal analysis therefore differ from the research
proposed here in the level at which the coverage techniques
are applied – we propose a source code metric not a mod-
elling language or FSM metric. Approaches that use muta-
tion of abstract models instead of source code have benefits
as a coverage metric but do not provide an assessment met-
ric that can be easily used to compare formal analysis to
testing.

4. CONCLUSIONS AND FUTURE WORK
Many people have already argued convincingly that there

is a need for more empirical, quantitative research in soft-
ware engineering in general [4] as well as better empirical
practises [11, 12]. Moreover, many people have also al-
ready argued, perhaps less convincingly, that testing and
formal analysis are complementary and offer powerful syn-
ergies that could be leveraged through a combined use. Our
work is motivated by both of these observations. In partic-
ular, we propose to conduct an empirical study to explore
the relationship and synergies between testing and formal
analysis and the usefulness of formal analysis in detecting
bugs in industrial source code. To the best of our knowl-
edge our proposed study is a novel approach since no other
work has used mutation metrics at the source code level as a
method of comparing formal analysis techniques with test-
ing. Some of the expected contributions of our study include
an experimental assessment framework and empirical data.

In addition to using our assessment framework to conduct
experiments, other future work includes extending it to in-
clude the ability to optimize test suites and property sets
(see Fig. 2). We plan to investigate existing model-based
test generation approaches [7] to generate tests from our
properties and conversely develop a property generation ap-
proach, similar to Daikon [6] and Terracotta [17], that uses
tests as input. We also plan to use the assessment results
from our framework to reduce test suites and property sets
by removing tests and/or properties that are superfluous in
terms of the metrics we use.

5. REFERENCES
[1] P. Anderson. CodeSurfer/Path Inspector. In Proc. of

the IEEE Int. Conf. on Software Maintenance
(ICSM04), Sept. 2004.

[2] J.H. Andrews, L.C. Briand, and Y. Labiche. Is
mutation an appropriate tool for testing experiments?
In Proc. of ICSE 2005, pages 402–411, 2005.

[3] T. Ball and S.K. Rajamani. The SLAM project:
Debugging system software via static analysis. In
Proc. of Symp. on Principles of Programming
Languages (POPL 2002), pages 1–3, Jan. 2002.

[4] S.S. Brilliant and J.C. Knight. Empirical research in
software engineering: a workshop. SIGSOFT Software
Engineering Notes, 24(3):44–52, 1999.

[5] M.B. Dwyer, G.S. Avrunin, and J.C. Corbett.
Patterns in property specifications for finite-state
verification. In Proc. of ICSE’99, pages 411–420, May
1999.

[6] M.D. Ernst, J. Cockrell, W.G. Griswold, and
D. Notkin. Dynamically discovering likely program
invariants to support program evolution. IEEE Trans.
on Soft. Eng., 27(2):1–25, Feb. 2001.

[7] G. Hamon, L. de Moura, and J. Rushby. Generating
efficient test sets with a model checker. In Proc. of the
Int. Conf. on Software Engineering and Formal
Methods (SEFM’04), pages 261–270, Sept. 2004.

[8] C.A.R. Hoare. Assertions: A personal perspective.
IEEE Annals of the History of Computing, 25(2),
Apr.-Jun. 2003.

[9] Y. Hoskote, T. Kam, P. Ho, and X. Zhao. Coverage
estimation for symbolic model checking. In Proc. of
the Conference on Design Automation (DAC 1999),
pages 300–305, Jun. 1999.

[10] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments on the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In Proc. of
ICSE’94, pages 191–200, May 1994.

[11] N. Juristo, A.M. Moreno, and S. Vegas. Towards
building a solid empirical body of knowledge in testing
techniques. SIGSOFT Software Engineering Notes,
29(5):1–4, 2004.

[12] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou.
Bugbench: Benchmarks for evaluating bug detection
tools. In Proc. of the Work. on the Evaluation of
Software Defect Detection Tools, June 2005.

[13] Robby, M.B. Dwyer, and J. Hatcliff. Bogor: an
extensible and highly-modular software model
checking framework. In Proc. of ESEC/FSE-11, pages
267–276, Sept. 2003.

[14] G. Rothermel and M.J. Harrold. Empirical studies of
a safe regression test selection technique. IEEE Trans.
on Soft. Eng., 25(6):401–419, Jun. 1998.

[15] J. Rushby. Disappearing formal methods. In Proc. of
the High-Assurance Systems Engineering Symp.
(HASE’00), Nov. 2000.

[16] H. Sutter. The free lunch is over: A fundamental turn
toward concurrency in software. Dr. Dobb’s Journal,
30(3), Mar. 2005.

[17] J. Yang and D. Evans. Dynamically inferring temporal
properties. In Proc. of the ACM SIGPLAN-SIGSOFT
Work. on Program Analysis for Software Tools and
Engineering (PASTE 2004), Jun. 2004.


