
Modeling Erlang in the π–Calculus
Chanchal K. Roy and James R. Cordy

Abstract
This poster presents a mapping of Erlang programs to the π–calculus,
a process algebra whose name–passing feature allows representa-
tion of the mobile aspects of software written in Erlang in a natural
way.

1 Motivation
•High quality demands for telecommunication software

(availability, robustness, correctness, ...)
• Testing not sufficient to guarantee properties
• Solution: formal verification

Formal Verification: Use of formal methods to prove that (a model of)
a system has certain properties specified in a suitable logic.

Here:

•Concentrate on first step: model construction
• Put emphasis on mobility

2 PIErlang Syntax
A subset of the Erlang programming language called PIErlang is used
in this study. Ignors higher–order functions, list comprehensions, in-
teroperation etc.

Program ::= Fdef1 . . .Fdefn ; n>0

Fdef ::= f(X1, . . .,Xn)-> E ; n>=0

E ::= n | a | X
| X=E | E1 ,E2

| self () | f(A1, . . .,An) ; n>=0

| spawn(f , [A1, . . .,An]) ; n>=0

| {A1, . . .,An} ; n>0

| A1!A2 | A!{A1, . . .,An} ; n>0

| receive M1; . . .;Mn end ; n>0

| case E of M1; . . .;Mn end ; n>0

M ::= P->E | {P1, . . .,Pn}->E ; n>0

P ::= n | a | X
A ::= n | a | X | self ()

3 A Simplistic Resource Manager
The start function first spawns a resource and a manager pro-
cess and then invokes the client function. The PID of resource is
initially not known to client, and it therefore first needs to retrieve
this information from the manager. Having received the PID it sends
a simple request to resource.

start() ->
Rsr = spawn(resource, []),
Mgr = spawn(manager, [Rsr]),
client(Mgr).

resource() -> manager(Rsr) ->
receive receive
Req-> {access, C} ->

action C!{ok, Rsr}
end. end

client(Mgr) ->
Mgr!{access, self()},
Receive
{ok, R} -> R!request

end.

4 The Polyadic π–Calculus
Here we introduce the syntax of the Milner et.al.’s asynchronous π–
calculus, which is parameterized with respect to a set I of agent (rep-
resented by i ∈ I) and to a set X of names (x, y, z etc.). The names
serve as both communication channels and data to be transmitted
along them.

Sys ::= Pdef1 . . .Pdefn % system

Pdef ::= i(x1, . . .,xn) = Proc % process definition

Proc ::= nil % inactive process
| x0(x1, . . .,xn).Proc % input
| x0<x1, . . .,xn>.nil % asynchronous output
| Proc1 ‖ Proc2 % parallel composition
| Proc1 + Proc2 % non–deterministic choice
| (ν x)Proc % new name
| [x1=x2]Proc % match
| [x1<>x2]Proc % mismatch
| i<x1, . . .,xn> % process instantiation

Reaction Rule: communication in the π–calculus

x0<y1, . . .,yn>.nil ‖ x0(x1, . . .,xn).P
→ nil ‖ P [x1 7→ y1, . . . , xn 7→ yn]

• actually synchronous

• however, special form of output is “non–blocking”

5 Resource Manager in the π–Calculus:
Having applied the mappings, a π–model of the resource manager is
obtained as follows:

Main = (ν self)(start(self))

start(self) = (ν rPID, mPID, cPID, p, q)

(p<rPID>.nil ‖ resource(rPID) ‖
p(Rsr).(q<mPID>.nil ‖
manager(mPID,Rsr) ‖
q(Mgr).client(cPID,Mgr)))

resource(self) = self(Req).res<action>.nil

manager(self,Rsr) = self(input,C).

[input=access]C<ok,Rsr>.nil

client(self, Mgr) = Mgr<access,self>.nil ‖
self(input,R).

[input=ok]R<request>.nil

6 Observing Behavior in the π–Calculus
To examine the behavior of obtained π–model, we start from the Main
process. Instantiation of start process =⇒ react on p and q =⇒
omit nil process

(ν rPID, mPID, cPID)

resource(rPID)
‖

manager(mPID, rPID)
‖

client(cPID, mPID)

Upon instantiation of manager and client process, we get

(ν rPID, mPID, cPID)

resource(rPID)
‖

mPID(input,C).[input=access]C<ok,rPID>.nil
‖

mPID<access,cPID>.nil ‖
cPID(input,R).[input=ok]R<request>.nil

client asks manager for handle to resource: react on mPID

(ν rPID, mPID, cPID)

resource(rPID)
‖

[access=access]cPID<ok,rPID>.nil
‖

nil ‖ cPID(input,R).[input=ok]R<request>.nil

Matching access=access, react on cPID

(ν rPID, mPID, cPID)

resource(rPID)
‖
nil
‖

nil ‖ [ok=ok]rPID<request>.nil

Invoking the resource process, we get

(ν rPID, mPID, cPID)

rPID(Req).res<action>.nil
‖
nil
‖

nil ‖ [ok=ok]rPID<request>.nil

client can send actual request to resource

(ν rPID, mPID, cPID)

res<action>.nil
‖
nil
‖

nil ‖ nil

7 The Translation Mapping
Goal: define

TrPI : Erlang → π–Calculus
such that the “essential behaviour” of programs is represented

Important issues:

•Data structures
• Process creation
• Asynchronous communication via mailboxes
• Polyadic (i.e., tuple) communication
•Deterministic matching (case/receive)

Translation of Programs:

TrPI prog: Name X Program → System

TrPI prog(self, F1, . . .,Fn)

:=

(
Main=(ν self, OtherNames)TrPIexp(self, f 0),
TrPI fundef (self, F1), . . .,TrPI fundef (self, Fn)

)

where f 0 is the left hand side of F1 and OtherNames is the set of
names/atoms used in the system.
Translation of Function Definitions:

TrPI fundef: Name X Function Def . → Process Def .

TrPI fundef (self, f(X1, . . .,Xn)-> E)

:=
(

f(self, X1, . . .,Xn) = TrPI exp(self, E)
)

Translation of Expressions:

TrPI exp: Name X Expression → Process

• yields a process which evaluates the given expression...
• ... and returns the value along the res channel
• abstracts from (most) data structures (numbers, lists, ...)
• atoms and pids are faithfully represented

TrPI arg: Argument → Name

TrPI arg(n) := unknown

TrPI arg(a) := a

TrPI arg(X) := X

TrPI arg(self()) := self

Simple Expressions:

TrPI exp(self, A) := res<TrPI arg(A)>.nil

TrPIexp(self, {A1, . . .,An})
:= res<TrPI arg(A1), . . .,TrPI arg(An)>.nil

Send Expression:

TrPI exp(self, A!{A1, . . .,An})

:=

TrPI arg(A)<TrPI arg(A1), . . .,TrPI arg(An)>.nil
‖

res<TrPI arg(A1), . . .,TrPI arg(An)>.nil

Receive Expression: an example

receive
ok -> a;
{req, P} -> b;
X -> c

end

TrPIexp−→
self(in).[in=ok]res<a>.nil +
self(in,P).[in=req]res.nil +
self(X).[X<>ok]res<c>.nil

8 Conclusion
Done:

•Developed a π–calculus model which reflects “essential” behaviour
of an Erlang program
• Improvement of previous approach:

– respects order of overlapping patterns (deterministic branching)
– supports tuple communication

To do:

• Larger case studies
•Representation of list data structures
•Respect order of messages

References
[1] C. K. Roy, T. Noll, B. Roy and J.R. Cordy. Towards Automatic

Verification of Erlang Programs by π-Calculus Translation. In Proc.
Erlang’06, ACM SIGPLAN 5th Erlang Workshop, Portland, Ore-
gon, ACM, September 2006, pp. 38-49.

