UNIVERSITY

Abstract

This poster presents a mapping of Erlang programs to the m—calculus,
a process algebra whose name—passing feature allows representa-
tion of the mobile aspects of software written in Erlang in a natural
way.

1 Motivation

e High quality demands for telecommunication software
(availability, robustness, correctness, ...)

e Testing not sufficient to guarantee properties
e Solution: formal verification

Formal Verification: Use of formal methods to prove that (a model of)
a system has certain properties specified in a suitable logic.
Here:

e Concentrate on first step: model construction
e Put emphasis on mobility

2 PIErlang Syntax

A subset of the Erlang programming language called PlErlang is used
in this study. Ignors higher—order functions, list comprehensions, in-
teroperation etc.

Program = Fdef; ... Fdef, ; n>0

Fdef == £(Xy, ..., Xp)—>FE ; n>=0
EF:x=nla|X
X=F|FE;, Ey
self () | £(Ay, ..., Ap) ; n>=0
spawn (f, [As, ..., Apl) ; n>=0
{AI, ...,An}; n>0
AtAg | AV Ay, ..., Ap} 5 n>0
receive My; ...; M, end ; n>0
case FF of My; ...; M, end; n>0
M = P->FE |{Py, ..., Py}-—>E ; n>0
P:=n|al|X
Ax=mn|a| X |self ()

3 A Simplistic Resource Manager

The start function first spawns a resource and a manager pPro-
cess and then invokes the c1ient function. The PID of resource is
initially not known to client, and it therefore first needs to retrieve
this information from the manager. Having received the PID it sends
a simple request to resource.

start () —>
Rsr = spawn (resource, []),
Mgr = spawn (manager, [Rsr]),

client (Mgr) .

resource () -> manager (Rsr) —->
recelve recelive
Req—> {access, C} —>
action c!{ok, Rsr}
end. end
client (Mgr) —>
Mgr!{access, self()},
Receive

{ok, R} —> R!request
end.

Modeling Erlang 1n the m—Calculus

Chanchal K. Roy and James R. Cordy

4 The Polyadic m—Calculus

Here we introduce the syntax of the Milner et.al.'s asynchronous 7m—
calculus, which is parameterized with respect to a set I of agent (rep-
resented by ¢ € I) and to a set X of names (X, y, z etc.). The names
serve as both communication channels and data to be transmitted
along them.

Sys ::= Pdef; ... Pdef, % system

Pdef =i (xy, ..., zy) = Proc % process definition

Proc :=nil % Inactive process

o (Ty, ..., Tn) . Proc % input

To<T{, ..., Tp>.nil % asynchronous output
Procy || Procy % parallel composition
Procy + Procy % non—deterministic choice
(v z) Proc % new name

[x7=x9] Proc % match

[x1<>x9] Proc % mismatch

I<Ty, .., Tp> % process instantiation

Reaction Rule: communication in the m—calculus

T0<Yl, -~ Yyp>.0nil || xg(x1, ..., 2n). P
— nil || Pl = y1,...,Tn — Yn)

e actually synchronous

e however, special form of output is “non—blocking”

5 Resource Manager in the —Calculus:

Having applied the mappings, a m—model of the resource manager is
obtained as follows:

Main = (v self) (start (self))
start (self) = (v rPID, mPID, cPID, p, Q)
(P<rPID>.nil || resource (rPID) |
p (Rsr) . (Q<mPID>.nil ||
manager (mPID, Rsr) |
g (Mgr) .client (cPID,Mgr)))
resource (self) = self (Req) .res<action>.nil
manager (self,Rsr) = self (1nput,C).

[input=access]C<ok,Rsr>.nil

client (self, Mgr) Mgr<access,self>.nil |
self (1nput,R) .

[input=ok]R<request>.nil

6 Observing Behavior in the 7—Calculus

To examine the behavior of obtained =—model, we start from the Main
process. Instantiation of start process = reactonp and g =
omit nil process

((u rPID, mPID, cPID) \
/resource(rPID) \

manager (mPID, rPID)

\ \client (cPID, mPID) /)

Upon instantiation of manager and client process, we get

((u rPID, mPID, cPID) \
/resource(rPID) \

mPID (input,C) . [input=access]C<ok, rPID>.nil

mPID<access, cPID>.nil ||

\\cPID(input,R).[input=ok]§<request>.nil))
client asks manager for handle to resource: react on mpID

((u rPID, mPID, cPID) \
(resource(rPID) \

[access=access | cPID<ok,rPID>.n1l

\\nil\|cPID(input,R).[input=ok]§<request>.nil)/

Matching access=access, react on cpPID

((u rPID, mPID, cPID) \
/resource(rPID) \

|
nil
|

\\nil\\[ok=ok]?§fﬁ<request>.nil)/

Invoking the resource process, we get

((u rPID, mPID, cPID) \
(rPID(Req).res<action>.nil \
|
nil
|

\\nil\\[ok=ok]rPID<request>.nil)/
client can send actual request to resource

((u rPID, mPID, cPID)\
(res<action>.nil\

|
\\\ nilW\nil))

7 The Translation Mapping

Goal: define
TrPI : Erlang — 7m—Calculus

such that the “essential behaviour” of programs is represented

Important issues:

e Data structures

e Process creation

e Asynchronous communication via mailboxes
e Polyadic (i.e., tuple) communication

e Deterministic matching (case/receive)

Translation of Programs:

TrPIprog: Name X Program — System

TTP[pfr’Og(Self, Fl, ey Fn)
 (Main=(v self, OtherNames) TrPley, (self, f0),
o TrP]fundef<Selfr Fl)r Ce ey T?“P[fundef(self, Fn)

where f 0 is the left hand side of | and OtherNames is the set of
names/atoms used in the system.
Translation of Function Definitions:

TrPI pypdef: Name X Funclion Def. — Process Def.

NSERC

T?“P[fundef<self, f(Xy, ..., Xp) —> E)
= (f(self, Xy, ..., Xp) = TrPleyp (self, E))

Translation of Expressions:

IrPleyp: Name X Expression — Process

e yields a process which evaluates the given expression...
e ... and returns the value along the res channel

e abstracts from (most) data structures (numbers, lists, ...)
e atoms and pids are faithfully represented

TrPIgrq: Argument — Name

TrPI 4r¢(n) := unknown

TrPlarg(a) = a

TrPlarg(X) = X
TrPIlarg(self ()) = self

Simple Expressions:

TrPlesp(self, A) == Tes<TrPlu¢(A)>.nil

— res< TTP]CLT'Q(A]_)I R TTP]ayﬂg(An>>.nll

Send Expression:

TrPlarg(A)<TrPlarg(A1), ..., TrPLarg(An)>.nil

= |
res<TrPlurq(A1), ..., TrPlgrg(Ap)>.nil

Receive Expression: an example

recelive
ok —> a; TrP] self (1n).[1n=ok]res<a>.nil +
{req, P} -> Dby -——?pself(in,P).[in=req]f§§.nil-+
X —> cC self (X). [X<>o0ok]res<c>.nil

end

8 Conclusion

Done:

e Developed a m—calculus model which reflects “essential” behaviour
of an Erlang program

e Improvement of previous approach:

— respects order of overlapping patterns (deterministic branching)
— supports tuple communication

To do:

e Larger case studies
e Representation of list data structures
e Respect order of messages

References

[1]C. K. Roy, T. Noll, B. Roy and J.R. Cordy. Towards Automatic
Verification of Erlang Programs by w-Calculus Translation. In Proc.
Erlang’06, ACM SIGPLAN 5th Erlang Workshop, Portland, Ore-
gon, ACM, September 2006, pp. 38-49.

