
Comput. Lang. Vol. 16, No. 1, pp. 97-107, 1991 0096-0551/91 $3.00 + 0.00
Printed in Great Britain. All rights reserved Copyright © 1991 Pergamon Press plc

T X L : A R A P I D P R O T O T Y P I N G S Y S T E M F O R

P R O G R A M M I N G L A N G U A G E D I A L E C T S

JAMES R. CORDY 1, CHARLES D. HALPERN-HAMU 2 and ERIC PROMISLOW ~

tDepartment of Computing and Information Science, Queen's University at Kingston,
Kingston, Canada K7L 3N6

-'Department of Computer Science, University of Toronto, Toronto, Canada M5S 1A4

(Received 22 January 1990)

Abstract--This paper describes a rapid prototyping system for extensions to an existing programming
language. Such extensions might include new language features or might introduce notation specific to
a particular problem domain. The system consists of a dialect description language used to specify the
syntax and semantics of extensions, and a context sensitive syntactic transducer that automatically
implements the extensions by transforming source programs written using them to equivalent programs
in the original unextended language. Because the transformer is context sensitive, it is more powerful than
traditional context free preprocessors and extensible languages can be used to prototype language
extensions involving significantly new programming paradigms such as object oriented programming.

Language dialects Prototypes Source transformation Preprocessors

1. I N T R O D U C T I O N

As the diversity of programming paradigms continues to grow and the importance of problem
domain specific notation in programming languages is increasingly accepted [1], it becomes more
and more important to be able to try out new language features and new notation. Ideally, we
should be able to rapidly prototype the new language features in order to benefit from user
experience before full scale production implementation and avoid expensive modifications to the
new language implementation later.

Because the expense of producing complete new language processors is prohibitive, the usual way
of conducting such prototyping experiments involves implementing the new language features on
top of an existing base language, creating a new dialect of the original base language. Traditionally,
this has been done using either a regular or context-free syntactic preprocessor such as a macro
processor, or by using an extensible programming language as the base language. These traditional
solutions have several drawbacks.

Syntactic preprocessors such as the PL/1 preprocessor [2], M4 [3] and the C preprocessor [4]
generally limit the range of possible dialects to regular or context-free translations to the syntax
of the original base language [5]. While this is a reasonably large set, it is by no means clear that
all of the dialects we might wish to prototype fall in this class. In particular, dialects involving
significantly new programming paradigms, such as object oriented and generic programming,
cannot be prototyped in this way.

While the more powerful macro preprocessors and extensible languages such as ICON [6], CLEF
[7] and Lithe [8] often allow a larger range of dialects than simply the context free set, they tend
to place limits on the syntactic form of the dialect notation and remove that necessary degree of
freedom in the prototyping capability. For example, macro preprocessors often limit the syntax
of new constructs to simple variants of functional notation while extensible languages usually limit
extensions to syntactic forms which are simple variants of the syntax of existing language features
such as functional notation and binary operators.

The rnkmac extension tool for the language Scheme [9], while still somewhat limited in its
syntactic capabilities, provides a very convenient method for specifying new language features. In
mkmac, dialect features are specified by example. Each mkmac macro gives an example of the
desired syntax along with a transformation of the example to Scheme code to specify the semantics
of the feature. By taking advantage of the inherent self-reference capabilities afforded by its

97

98 JAr~s R. CORDV et al.

interpretive nature (Scheme is a variant of Lisp), significantly new language features can be very
conveniently added.

This paper describes TXL, a system explicitly designed to allow easy description and automatic
prototype implementation of significantly new programming language features and programming
paradigms. The goal of TXL is to provide an extension tool which allows some measure of the
power and flexibility of the mkmac feature-by-example technique for traditional Pascal-like
compiled languages. TXL uses a context sensitive transformation algorithm that is not limited by
the constraints typical of most other preprocessors and extensible languages, and is driven by a
concise, readable dialect specification language that conveniently expresses the syntax and
semantics of new language features.

2. TXL, THE TURING EXTENDER LANGUAGE

Using the Turing programming language (or any other operational language) as a base, TXL
provides the ability to describe the syntactic forms and run-time model of new language dialects
at a very high level, and automatically provides an implementation of the new dialect. Dialects are
described using a specially designed dialect description language (TXL).

Each dialect is described in two parts, the context-free syntactic forms of the dialect (described
in terms of the syntactic forms of the base language using a BNF-like notation), and the run time
model of the dialect (described in terms of a set of transformations to the base language). The TXL
Processor uses these descriptions to transform source programs written in the described dialect to
programs in the base language, which can then be compiled or interpreted by the normal base
language processor (Fig. 1).

The syntactic forms of the base language itself are described to TXL using the same BNF-like
notation used to describe syntactic forms of the dialect. The base language syntactic description
forms a data base of syntactic forms used to describe the syntactic structures of the dialect. For
example, the syntactic forms of the Turing base include the forms declarationsAndStatements,
variableReference, assignmentStatement, and so on.

The semantics of the dialect are described as a set of recursive context transformations from the
syntactic structures of the dialect to generated base language structures.

3. A T R I V I A L E X A M P L E

As a simple example of the description of a dialect, consider the addition of coalesced assignment
short forms (i.e. the " + = ", " - = " etc. of C) to the Turing language. The desired syntactic forms
can be described in terms of the Turing base forms as a replacement of the statement syntactic
form to include the original Turing statement forms plus a new form we call coalescedAssignment
(Fig. 2).

The new definition for the statement syntactic form replaces the original Turing form in the
effective grammar of the dialect, so that the dialect accepted will include all of original Turing plus

Base Language I
Syntactic Description

Dialect
Language
Source
Progmm

TXL I Base Language
Processor I - Source

I Program

T

Fig. 1. Dialect descriptions for the TXL processor.

TXL: a rapid prototyping system 99

% Trivial coalesced assignment dialect;
% allows a + - b etc.

% Syntactic forms

define statement
choose

[coalescedAssig n ment]
[assignment]
[assert]

o o =

[get]
end define

% replaces Turing base syntactic form of the same name

% new dialect statement form
% original Turing
% statement forms

define coalescedAssignment
order

[variableReference] [coalescedOperator]= [expression]
end define

define coalescedOperator
choose + - * /

end define

Fig. 2. TXL description of the syntactic forms of the coalesced assignment dialect. Syntactic forms are
described using a BNF-like notation in which the keyword order indicates sequence and the keyword
choose indicates alternation. The dialect syntactic forms are integrated into the base language grammar
by replacing an existing base language syntactic form with a new form. In the above example, the new
form of statement replaces the original Turing syntactic form of the same name in the dialect grammar.

the new coalesced assignment statement. The form of the coalesced assignments themselves is
described using the new syntactic form coalescedAssignment and its sub-form coalescedOperator.

The meaning of the new syntactic form is described as a t ransformat ion to equivalent Turing
base language code. In this case, for example, the t ransformat ion changes the coalesced assignment
a + = b to the semantically equivalent Turing statement a :=a + b (Fig. 3).

4. I M P L E M E N T A T I O N OF T X L

The T X L processor consists o f three parts, the Parser, the Transformer and the Deparser (Fig. 4).
The T X L parser merges the base language syntactic description and user-supplied dialect syntactic
description to form an integrated dialect language syntactic description. The merge is done by
simply replacing each syntactic form specification (i.e. product ion) o f the base language g rammar
by the dialect syntactic form specification o f the same name (if any). In this way, the syntax o f
new dialect features is smoothly integrated into the features o f the original base language. Using

% Trivial coalesced assignment dialect (continued)

% Semantic transformations

rule replaceCoalescedOperators
replace [statement]

V [variableReference] Op [coalescedOperator]= E [expression]
by

V :- V O p (E)
end rule

Fig. 3. TXL description of the semantic transforms of the coalesced assignment dialect. The semantics
of the dialect are described using a set of rules that transform the syntactic forms of the dialect to
semantically equivalent base language structures. In this case every occurrence of a statement containing
the dialect syntactic form coalescedOperator is transformed to an assignment statement using the

corresponding Turing operator.

100 JAMES R. CORDY et al.

Base Language
Syntactic Description

+

Dialect
Syntactic Description

Dialect . _ ~
Language
Program

Dialect
Semantic Description

Dialect Auxiliary
q

Implementation Routines 't

t

q

TXL
Parser

TXL
Transformer

TXL
Deparser

Base
Language
Program

Dialect Language
Syntactic Description

S
Dialect Language

Parse Tree

Base Language
Parse Tree

Fig. 4. Implementation of the TXL processor.

this integrated grammar of the dialect language, the parser reads in dialect language source
programs and transforms then into dialect language parse trees that can be manipulated by the
transformer.

As an example, the syntax of the coalesced assignment dialect of the Turing base was specified
by simply copying the existing Turing base language statement syntactic form into the dialect
description and adding an alternative for the new syntactic form coalescedAssignment. The dialect's
new statement syntactic form then replaced the original Turing form in the integrated dialect
grammar, effectively adding coalesced assignments to the dialect language syntax.

The TXL transformer uses the dialect language semantic transform rules to recursively transform
the dialect program parse tree to a parse tree for a base language program with equivalent
semantics. The transform is done using a general purpose tree pattern matching algorithm.
Beginning with the main (first) transformation rule in the dialect semantic description, the
algorithm searches the parse tree for instances of the rule's anchor node which match the rule's
pattern and replaces the subtree of each matched instance with a new subtree for the replacement.
Other transformation rules may then be applied to the replacement subtree in a similar fashion,
and so on, recursively applying replacements down the tree.

As an example, the main transformation rule of the coalesced assignment dialect (Fig. 3) specifies
that in each subtree below a statement node, any subtree matching the pattern variableReference
coalescedOperator =expression should be replaced by another statement subtree containing the
assignment statement V:=V Op(E)where V, Op and E are the original subtrees for the variableRef-
erence, coalescedOperator and expression matched by the pattern.

TXL: A rapid prototyping system 101

In order to maintain the structural integrity of the parse tree throughout the process of
transformation and allow recursively applied transforms the replacement subtree is re-parsed using
the anchor node production of the dialect grammar before being linked in.

Finally, the TXL deparser generates the final base language source program by walking the base
language parse tree resulting from the transformations using a leftmost depth-first traversal of the
tree. Some dialects, such as those introducing concurrency primitives, may involve inclusion of
auxiliary implementation routines from a library in the generated result as well.

5. A MORE C H A L L E N G I N G E X A M P L E

One common modern programming technique not present in the Turing language is the ability
to declare generic (i.e. type parameterized) procedures and functions. An obvious Turing dialect
then is one which has this feature. However, with TXL it is just as easy to describe a dialect that
allows not just generic procedures and functions, but arbitrary generic declarations including
generic modules, procedures, functions, variables and types. We could imagine using such a facility
to declare generics for classic data structures such a stacks, for example:

generic SimpleStack (someSize, someType)

type SimpleStack :

record

depth : 0 .. someSize

contents : array 1 ..
end record

someSize of someType

Later in the generic dialect program, we might instantiate a stack or two:

% Instantiate and use a type for big

% stacks of strings

const bigDepth := I00

instance bigStackOfString : Stack (bigDepth,

var bsl, bs2 : bigStackOfString

string)

% Initialize stacks bsl and bs2

bsl.depth := 0

bs2.depth := 0

% Push the string "hi there" on bs2
bs2.depth := 1

bs2.contents (bs2.depth) := "hi there"

% Assign the entire value of bs2 to bsl

bsl := bs2

The TXL description of this dialect is given in Fig. 5. Two syntactic forms are added to the
Turing declaration forms. The genericDeclaration form allows any form of declaration in the dialect
(including generic declarations themselves) to be made generic. The InstanceDeclaration form
allows instances of any such generic declarations to be instantiated. The intended semantics is that
each instance of a generic declaration declares a new object of the original generic object type, for
example, an instance of a generic type declaration has the effect of a type declaration, an instance
of a generic procedure declaration has the effect of a procedure declaration, and so on.

The semantic transformations of the dialect describe this semantics as follows. The main rule
replaceGenerics searches in the parse tree of the dialect program for occurrences of the syntactic
form DeclarationsAndStatements (i.e. the body of a Turing language scope), and within each such
occurrence (i.e. scope) finds each generic declaration. It then replaces the remainder of the scope
of the generic declaration by the same scope with the generic declaration removed and instances

102 JAMES R. CORDY et al.

% Generic dialect of Turing - allows arbitrary generic declarations

% Syntactic forms

define declaration
choose

[genericDeclaration]
[instanceDeclaration]
[constantDeclaration]
[typeDeclaration]

, = =

[moduleDeclaration]
end define

% new dialect
% declaration forms
% original Turing
% declaration forms

define genericDeclaration
order

gener ic [id] ([list id])
[declaration]

end define

define instanceDeclaration
order

i n s t a n c e [id] : [id] ([list id])
end define

% Semantic transformations

rule replaceGenerics
replace [declarationsAndStatements]

gener ic Gname [id] (Formals [list id])
Decl [declaration]

RestOfScope [declarationsAndStatements]

end rule

by
RestOfScope

[fixlnstantiations Gname Formals Decl]

rule fixlnstantiations Gname [id] Formals [list id] Decl [declaration]
replace [declaration]

ins tance Iname [id] : Gname (Actuals [list id])
by

Decl [simpleSubst Gname Iname]
[simpleSubst Formals Actuals]

end rule

rule simpleSubst Old [id] New [id]
replace [id]

Old [id]
by

New
end rule

Fig. 5. TXL description of the generalized generic dialect of Turing.

of the generic replaced by instantiations of the generic. The actual replacement of instances with
instantiations of the body is achieved by the second transformation rule, f ix Ins tant ia t ions .

Given as parameters the name of a declared generic, its formal parameter list and its body
declaration, t he f i x Ins tan t ia t ions rule replaces each declaration of an instance of the generic in the
scope of its application with a copy of the generic's body in which the name of the generic
declaration is replaced by the name of the instance declaration and the formal parameter names
of the generic have been replaced by the actual parameters given in the instance.

TXL: a rapid prototyping system 103

Both the substitution of the instance name for the generic name and the substitution of the
actuals for the formals is achieved by the last transformation rule, simpleSubst. This rule simply
replaces each item in its first parameter (which may be a list) by the corresponding item in its second
parameter over its range of application. For the sake of presentation, the items in instance actual
parameter lists have been limited to identifiers in this example. In practice, arbitrary expressions
and type definitions would more likely be allowed in the dialect.

As an example of the kind of transformation done by TXL on a source program of the generic
dialect, consider the bigStackOfString example given earlier. Given the TXL specification of Fig.
5 and the bigStackOfString example as input, the TXL processor would output the Turing language
result:

% Instantiate and use a type for big
% stacks of strings

const bigDepth := I00

type bigStackOfString :
record

depth : 0..bigDepth

contents : array l..bigDepth of string
end record

var bsl, bs2 : bigStackOfString

Of course, a more reasonable generic characterization of the stack data structure would be as
an abstract data type complete with the operations Push, Pop and Top. Because our generic dialect
allows generics of any kind of Turing declaration, we can also do this within the dialect by making
a generic Turing module declaration:

generic Stack (someSize, someType)
module Stack

export (Push, Pop, Top)

vat depth : 0..someSize := 0

var contents : array l..someSize of someType

procedure Push (element: someType)
pre depth < someSize
depth := depth + 1
contents (depth) := element

end Push

function Top :' someType

pre depth > 0

result contents (depth)
end Top

procedure Pop

pre depth > 0
depth := depth - 1

end Pop
end Stack

104 JAMES R. CORDY et al.

Instances of the generic module Stack would then themselves be modules with the operations
Stacklnstance.Push, Stacklnstance.Pop and Stacklnstance.Top, for example:

% Instantiate and use a couple of stack modules
const smallSize := i0
const bigSize := I00

% First, a simple stack of strings

% This time, each instance of the generic is itself a complete module
instance SmallStringStack : Stack (smallSize, string)

% Use the string stack module a bit
SmallStringStack.Push ("Hi there")
SmallStringStack. Push ("Hello yourself")

SmallStringStack. Pop
put SmallStringStack.Top % outputs "Hi there"

% Next, an integer expression evaluation stack

instance IntStack : Stack (bigSize, int)

% Procedure to perform additions in the evaluation stack

procedure Add
const rightOperand := IntStack. Top
IntStack. Pop

const leftOperand := IntStack. Top

IntStack. Pop

IntStack. Push (leftOperand + rightOperand)
end Add

% An example calculation using the evaluation stack
IntStack.Push (I0)
IntStack.Push (47)
Add

put IntStack. Top % outputs 57

Using the dialect transformation rules in Fig. 5, TXL would transform each of the instances in
this example into a separate module, and the whole result would look like:

% Instantiate and use a couple of stack modules

const smallSize := I0
const bigSize := 100

% First, a simple stack of strings
% This time, each instance of the generic is itself a complete modul4
module SmallStringStack

export (Push, Pop, Top)

var depth : 0..smallSize := 0
var contents : array l..smallSize of string

procedure Push (element: string)
pre depth < smallSize
depth := depth + 1
contents (depth) := element

end Push

function Top : string
pre depth > 0
result contents (depth)

end Top

procedure Pop
pre depth > 0
depth := depth - 1

end Pop
end SmallStringStack

% Use the string stack module a bit
SmallStringStack. Push ("Hi there")

SmallStringStack. Push ("Hello yourself")
SmallStringStack. Pop
put SmallStringStack. Top % outputs "Hi there"

% Next, an integer expression evaluation stack

module IntStack

export (Push, Pop, Top)

vat depth : 0..bigSize := 0
vat contents : array l..bigSize of int

procedure Push (element: int)

pre depth < bigSize

depth := depth + 1
contents (depth) := element

end Push

function Top : int

pre depth > 0
result contents (depth)

end Top

procedure Pop
pre depth > 0

depth := depth - 1

end Pop

end IntStack

% Procedure to perform additions in the evaluation stack

procedure Add
const rightOperand := IntStack. Tcp
IntStack. Pop
const leftOperand := IntStack. Top

IntStack. Pop
IntStack. Push (leftOperand + rightOperand)

end Add

% An example calculation using the evaluation stack

IntStack. Push (i0)
IntStack. Push (47)
Add
put IntStack.Top % outputs 57

L05

106 JAMES R. CORDY et al.

Although simplistic in its syntax and transform, this generic dialect in fact provides full static
parametric polymorphism in the sense of Cardelli and Wegner [10]. While at first glance one would
assume that TXL dialects are limited to such static features, in fact full dynamic polymorphism
is achievable using a more complex transformation that uses pointers and records to represent
dynamically polymorphic objects.

6. SCOPE AND LIMITATIONS OF THE TECHNIQUE

The range of possible transformations far exceeds the simple examples shown in this paper. TXL
is capable of arbitrary general pattern matching, recursive transformations, arbitrary code motion,
generation of unique new identifiers and reference to auxiliary support routines. It has been used
to specify and implement several dialects of the Turing programming language including a complex
arithmetic dialect [11], an object-oriented programming dialect with object types. Polymorphism,
inheritance and dynamic binding [12] and a SNOBOL-Iike pattern matching dialect [11]. TXL has
also been used with base languages other than Turing to prototype the T'NIAL dialect of the NIAL
programming language [13], the Abacus concurrent programming language [14] and a few simple
dialects of Pascal.

The Turing programming language is particularly well suited as a base language for dialects
because of its relative lack of syntactic (in particular, its lack of ordering restrictions on declarations
and statements), its value-inherited type inference and its ability to reference external routines.
While the lack of any of these base language features would not in theory restrict the range of
dialects that can be described, in practice they do help to keep the descriptions of new dialects
elegant, concise and readable.

One problem with the general approach of language implementation by preprocessor is the
difficulty in providing error diagnostics that are related to the original source when the base
programming language processor detects errors in the transformed result. Although a correspond-
ing source location can often be found using a relatively simple source coordinate map such as that
implemented by the C preprocessor using line-and-file directives, it can be very difficult to relate
the semantics of the base language error message to the semantics of the dialect program,
particularly if the dialect implements a fundamentally different programming paradigm.

The range of dialects that can be described using TXL is restricted to some extent by the power
of the base language chosen. For example, using Turing or any other Pascal-like programming
language as a base does not allow us to describe a dialect containing the paradigm of program
self-reference, because no mapping to base language source can successfully introduce that new
concept into the execution of the resulting base language program.

TXL is most suitable for rapid prototyping of new programming constructs, notations and
dialects, the transformational power of TXL has been shown to be equivalent to that of general
Turing machines [11], thus the range of dialects that can be implemented using TXL is in theory
limited only by the bounds of computability. All compiling tasks, up to and including code
generation, can in theory be specified and implemented as TXL transforms. In practice, however,
TXL's range of application is limited by the complexity of the transformation rule sets, which can
be very great for dialects such as Objective Turing [12], and the performance of the rule interpreter,
which uses a unification algorithm similar to that used in Prolog implementations. As demonstrated
by the examples in this paper, it is relatively easy to make working transformations for new features
whose semantics are well understood as run time models, but it is very difficult to make efficient
ones. In the end, that final task is best left to professional programming language implementors.

7. SUMMARY

We have described a general technique for rapid prototyping of significantly different dialects
of an existing base programming language. The technique uses a very high level rule-based
specification language called TXL to describe the syntax and semantics of the dialect. In TXL, the
syntactic forms of the dialect are described by giving new syntactic form definitions to replace
existing syntactic forms of the base language, and the semantics of the dialect are described
separately using a set of applicative syntactic transformation rules that transform the syntactic

TXL: a rapid prototyping system 107

f o r m s o f the d ia lec t to s e m a n t i c a l l y e q u i v a l e n t syn tac t i c f o r m s o f the base l anguage . A d ia lec t

p r o c e s s o r t ha t a u t o m a t i c a l l y i m p l e m e n t s p r o t o t y p e p r e p r o c e s s o r s fo r l a n g u a g e d ia lec t s specif ied in

T X L has been used to i m p l e m e n t severa l d ia lec ts o f the T u r i n g p r o g r a m m i n g l anguage .

Acknowledgements--The TXL technique and dialect specification language were designed by C. D. Halpern-Hamu and J.
R. Cordy at the University of Toronto [15]. The TXL processor implementation was prototyped by C. D. Halpern at the
University of Toronto and refined to production by E. Promislow at Queen's University [11]. The Turing programming
language [16] was designed and implemented by R. C. Holt, J. R. Cordy, M. P. Mendell, S. G. Perelgut and others at the
University of Toronto. The development of TXL was generously supported by the Natural Sciences and Engineering
Research Council of Canada.

R E F E R E N C E S

1. Hailpern, B. Multiparadigm research: A survey of nine projects. IEEE Software 30): 70-77; 1986.
2. OS PL/I Checkout and Optimizing Compilers: Language Reference Manual. Form No. GC33-000%4, IBM Data

Processing Division; 1976.
3. Kernighan B. W. and Ritchie, D. M. The M4 macro processor. In The UNIX Programmer's Manual, 7th edn; 1979.
4. Kernighan, B. W. and Ritchie, D. M. The C Programming Language. Englewood Cliffs, NJ: Prentice-Hall; 1978.
5. Standish, T. A. Extensibility in programming language design. Proc. 1975 Spring Joint Computing Conference, AFIPS

44: 1975.
6. Griswold, R. E. and Griswold, M. T. The ICON Programming Language. Englewood Cliffs, N J: Prentice-Hall; 1983.
7. Triance, J. M. and Layzell, P. J. CLEF--A COBOL language enhancement facility. Computation Department, Report

273, University of Manchester Institute of Science and Technology; December 1982.
8. Sandberg, D. Lithe: A language combining a flexible syntax and classes. Proc. 9th ACM Symposium on Principles of

Programming Languages; January 1982.
9. Kohlbecker, E. Using mkmac. Technical Report 157, Computer Science Department, Indiana University; May 1984.

10. Cardelli, L. and Wegner, P. On understanding types, data abstraction, and polymorphism. ACM Comput. Sun,. 17(4):
471-522; 1985.

I I. Promislow, E. A run-time model for generating semantic transformations from syntactic specifications. M.Sc. lhesis,
Department of Computing and Information Science, Queen's University at Kingston; 1989.

12. Cordy, J. R. and Promislow, E. Specification and automatic prototype implementation of polymorphic objects in turing
using the TXL dialect processor. Proc. ICCL "90, IEEE 1990 International Conference on Computer Languages. New
Orleans; March 1990.

13. Jenkins, M. A., Glasgow, J. I. and McCorsky, C. D. Programming styles in NIAL. IEEE Software 30): 46-55; 1986.
14. Nierstrasz, O. The Abacus Programming language (Version l.l). Centre Universitaire d'Informatique, Geneva; 1988.
15. Halpern, C. D. TXL: A rapid prototyping tool for programming language design. M.Sc. thesis, Department of

Computer Science, University of Toronto; 1986.
16. Holt, R. C. and Cordy, J. R. The TURING programming language. Commun. ACM 31(12): 1410-1423; 198f;.

About the Author--JAmES R. CORDY received his B.Sc. in 1973, M.Sc. in 1976 and Ph.D. in computer
science in 1986 from the University of Toronto. From 1974 to 1983 Dr Cordy served as a research associate
in the Computer Systems Research Institute at the University of Toronto, and from 1983 to 1985 he was
a lecturer in the Department of Computer Science of that same university. He is presently Associate
Professor of computing and information science at Queen's University at Kingston, Canada. Dr Cordy
is co-designer of the programming languages Concurrent Euclid, Turing and Turing Plus, The Turing
programming environment and the S/SL compiler specification language. He is a member of the
Association for Computing Machinery, the lEE Computer Society and IFIP working group 2.4.

About the Author--CHARLES D. HALPERN-HAMU received the B.S. degree in computer science from Indiana
University in 1984, and the M.Sc degree in computer science from the University of Toronto in 1986. Since
1986, he has been pursuing the Ph.D. degree in computer science at the University of Toronto. His
doctoral research concerns direct manipulation, user interface management systems, and the use of robots
by the disabled. His research interests also include programming language semantics and programming
language design.

About the Author--ERIC PROMISLOW attended the University of British Columbia before receiving the B.Sc.
degree in biophysics from the University of Toronto in 1984. He subsequently spent two years at Simon
Fraser University and Queen's University studying computing science and expects to receive the M.Sc.
degree in computing and information science from Queen's University in 1990. Mr Promislow has been
a software engineer at Bell-Northern Research Limited and has recently joined the software staff at
Exoterica Systems in Ottawa, Canada.

