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Abstract--This paper describes a rapid prototyping system for extensions to an existing programming 
language. Such extensions might include new language features or might introduce notation specific to 
a particular problem domain. The system consists of a dialect description language used to specify the 
syntax and semantics of extensions, and a context sensitive syntactic transducer that automatically 
implements the extensions by transforming source programs written using them to equivalent programs 
in the original unextended language. Because the transformer is context sensitive, it is more powerful than 
traditional context free preprocessors and extensible languages can be used to prototype language 
extensions involving significantly new programming paradigms such as object oriented programming. 

Language dialects Prototypes Source transformation Preprocessors 

1. I N T R O D U C T I O N  

As the diversity of programming paradigms continues to grow and the importance of problem 
domain specific notation in programming languages is increasingly accepted [1], it becomes more 
and more important to be able to try out new language features and new notation. Ideally, we 
should be able to rapidly prototype the new language features in order to benefit from user 
experience before full scale production implementation and avoid expensive modifications to the 
new language implementation later. 

Because the expense of producing complete new language processors is prohibitive, the usual way 
of conducting such prototyping experiments involves implementing the new language features on 
top of an existing base language, creating a new dialect of the original base language. Traditionally, 
this has been done using either a regular or context-free syntactic preprocessor such as a macro 
processor, or by using an extensible programming language as the base language. These traditional 
solutions have several drawbacks. 

Syntactic preprocessors such as the PL/1 preprocessor [2], M4 [3] and the C preprocessor [4] 
generally limit the range of possible dialects to regular or context-free translations to the syntax 
of the original base language [5]. While this is a reasonably large set, it is by no means clear that 
all of the dialects we might wish to prototype fall in this class. In particular, dialects involving 
significantly new programming paradigms, such as object oriented and generic programming, 
cannot be prototyped in this way. 

While the more powerful macro preprocessors and extensible languages such as ICON [6], CLEF 
[7] and Lithe [8] often allow a larger range of dialects than simply the context free set, they tend 
to place limits on the syntactic form of the dialect notation and remove that necessary degree of 
freedom in the prototyping capability. For example, macro preprocessors often limit the syntax 
of new constructs to simple variants of functional notation while extensible languages usually limit 
extensions to syntactic forms which are simple variants of the syntax of existing language features 
such as functional notation and binary operators. 

The rnkmac extension tool for the language Scheme [9], while still somewhat limited in its 
syntactic capabilities, provides a very convenient method for specifying new language features. In 
mkmac, dialect features are specified by example. Each mkmac macro gives an example of the 
desired syntax along with a transformation of the example to Scheme code to specify the semantics 
of the feature. By taking advantage of the inherent self-reference capabilities afforded by its 
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interpretive nature (Scheme is a variant of Lisp), significantly new language features can be very 
conveniently added. 

This paper describes TXL, a system explicitly designed to allow easy description and automatic 
prototype implementation of significantly new programming language features and programming 
paradigms. The goal of TXL is to provide an extension tool which allows some measure of the 
power and flexibility of the mkmac feature-by-example technique for traditional Pascal-like 
compiled languages. TXL uses a context sensitive transformation algorithm that is not limited by 
the constraints typical of most other preprocessors and extensible languages, and is driven by a 
concise, readable dialect specification language that conveniently expresses the syntax and 
semantics of new language features. 

2. TXL, THE TURING EXTENDER LANGUAGE 

Using the Turing programming language (or any other operational language) as a base, TXL 
provides the ability to describe the syntactic forms and run-time model of new language dialects 
at a very high level, and automatically provides an implementation of the new dialect. Dialects are 
described using a specially designed dialect description language (TXL). 

Each dialect is described in two parts, the context-free syntactic forms of the dialect (described 
in terms of the syntactic forms of the base language using a BNF-like notation), and the run time 
model of the dialect (described in terms of a set of transformations to the base language). The TXL 
Processor uses these descriptions to transform source programs written in the described dialect to 
programs in the base language, which can then be compiled or interpreted by the normal base 
language processor (Fig. 1). 

The syntactic forms of the base language itself are described to TXL using the same BNF-like 
notation used to describe syntactic forms of the dialect. The base language syntactic description 
forms a data base of syntactic forms used to describe the syntactic structures of the dialect. For 
example, the syntactic forms of the Turing base include the forms declarationsAndStatements, 
variableReference, assignmentStatement, and so on. 

The semantics of the dialect are described as a set of recursive context transformations from the 
syntactic structures of the dialect to generated base language structures. 

3. A T R I V I A L  E X A M P L E  

As a simple example of the description of a dialect, consider the addition of coalesced assignment 
short forms (i.e. the " +  = ", " -  = "  etc. of C) to the Turing language. The desired syntactic forms 
can be described in terms of the Turing base forms as a replacement of the statement syntactic 
form to include the original Turing statement forms plus a new form we call coalescedAssignment 
(Fig. 2). 

The new definition for the statement syntactic form replaces the original Turing form in the 
effective grammar of the dialect, so that the dialect accepted will include all of original Turing plus 

Base Language I 
Syntactic Description 

Dialect 
Language 
Source 
Progmm 

TXL I Base Language 
Processor I - Source 

I Program 

T 

Fig. 1. Dialect descriptions for the TXL processor. 
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% Trivial coalesced assignment dialect; 
% allows a + -  b etc. 

% Syntactic forms 

define statement 
choose 

[coalescedAssig n ment] 
[assignment] 
[assert] 

o o =  

[get] 
end define 

% replaces Turing base syntactic form of the same name 

% new dialect statement form 
% original Turing 
% statement forms 

define coalescedAssignment 
order 

[variableReference] [coalescedOperator]= [expression] 
end define 

define coalescedOperator 
choose + -  * / 

end define 

Fig. 2. TXL description of the syntactic forms of the coalesced assignment dialect. Syntactic forms are 
described using a BNF-like notation in which the keyword order indicates sequence and the keyword 
choose indicates alternation. The dialect syntactic forms are integrated into the base language grammar 
by replacing an existing base language syntactic form with a new form. In the above example, the new 
form of statement replaces the original Turing syntactic form of the same name in the dialect grammar. 

the new coalesced assignment statement. The form of  the coalesced assignments themselves is 
described using the new syntactic form coalescedAssignment and its sub-form coalescedOperator. 

The meaning  of  the new syntactic form is described as a t ransformat ion  to equivalent Turing 
base language code. In this case, for example, the t ransformat ion  changes the coalesced assignment 
a + = b to the semantically equivalent Turing statement a :=a  + b (Fig. 3). 

4. I M P L E M E N T A T I O N  OF T X L  

The T X L  processor  consists o f  three parts, the Parser, the Transformer  and the Deparser  (Fig. 4). 
The T X L  parser merges the base language syntactic description and user-supplied dialect syntactic 
description to form an integrated dialect language syntactic description. The merge is done by 
simply replacing each syntactic form specification (i.e. product ion)  o f  the base language g rammar  
by the dialect syntactic form specification o f  the same name (if any). In this way, the syntax o f  
new dialect features is smoothly  integrated into the features o f  the original base language. Using 

% Trivial coalesced assignment dialect (continued) 

% Semantic transformations 

rule replaceCoalescedOperators 
replace [statement] 

V [variableReference] Op [coalescedOperator]= E [expression] 
by 

V :- V O p ( E )  
end rule 

Fig. 3. TXL description of the semantic transforms of the coalesced assignment dialect. The semantics 
of the dialect are described using a set of rules that transform the syntactic forms of the dialect to 
semantically equivalent base language structures. In this case every occurrence of a statement containing 
the dialect syntactic form coalescedOperator is transformed to an assignment statement using the 

corresponding Turing operator. 
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Fig. 4. Implementation of the TXL processor. 

this integrated grammar of the dialect language, the parser reads in dialect language source 
programs and transforms then into dialect language parse trees that can be manipulated by the 
transformer. 

As an example, the syntax of the coalesced assignment dialect of the Turing base was specified 
by simply copying the existing Turing base language statement syntactic form into the dialect 
description and adding an alternative for the new syntactic form coalescedAssignment. The dialect's 
new statement syntactic form then replaced the original Turing form in the integrated dialect 
grammar, effectively adding coalesced assignments to the dialect language syntax. 

The TXL transformer uses the dialect language semantic transform rules to recursively transform 
the dialect program parse tree to a parse tree for a base language program with equivalent 
semantics. The transform is done using a general purpose tree pattern matching algorithm. 
Beginning with the main (first) transformation rule in the dialect semantic description, the 
algorithm searches the parse tree for instances of the rule's anchor node which match the rule's 
pattern and replaces the subtree of each matched instance with a new subtree for the replacement. 
Other transformation rules may then be applied to the replacement subtree in a similar fashion, 
and so on, recursively applying replacements down the tree. 

As an example, the main transformation rule of the coalesced assignment dialect (Fig. 3) specifies 
that in each subtree below a statement node, any subtree matching the pattern variableReference 
coalescedOperator =expression should be replaced by another statement subtree containing the 
assignment statement V:=V Op(E)where V, Op and E are the original subtrees for the variableRef- 
erence, coalescedOperator and expression matched by the pattern. 
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In order to maintain the structural integrity of the parse tree throughout the process of 
transformation and allow recursively applied transforms the replacement subtree is re-parsed using 
the anchor node production of the dialect grammar before being linked in. 

Finally, the TXL deparser generates the final base language source program by walking the base 
language parse tree resulting from the transformations using a leftmost depth-first traversal of the 
tree. Some dialects, such as those introducing concurrency primitives, may involve inclusion of 
auxiliary implementation routines from a library in the generated result as well. 

5. A MORE C H A L L E N G I N G  E X A M P L E  

One common modern programming technique not present in the Turing language is the ability 
to declare generic (i.e. type parameterized) procedures and functions. An obvious Turing dialect 
then is one which has this feature. However, with TXL it is just as easy to describe a dialect that 
allows not just generic procedures and functions, but arbitrary generic declarations including 
generic modules, procedures, functions, variables and types. We could imagine using such a facility 
to declare generics for classic data structures such a stacks, for example: 

generic SimpleStack (someSize, someType) 

type SimpleStack : 

record 

depth : 0 .. someSize 

contents : array 1 .. 
end record 

someSize of someType 

Later in the generic dialect program, we might instantiate a stack or two: 

% Instantiate and use a type for big 

% stacks of strings 

const bigDepth := I00 

instance bigStackOfString : Stack (bigDepth, 

var bsl, bs2 : bigStackOfString 

string) 

% Initialize stacks bsl and bs2 

bsl.depth := 0 

bs2.depth := 0 

% Push the string "hi there" on bs2 
bs2.depth := 1 

bs2.contents (bs2.depth) := "hi there" 

% Assign the entire value of bs2 to bsl 

bsl := bs2 

The TXL description of this dialect is given in Fig. 5. Two syntactic forms are added to the 
Turing declaration forms. The genericDeclaration form allows any form of declaration in the dialect 
(including generic declarations themselves) to be made generic. The InstanceDeclaration form 
allows instances of any such generic declarations to be instantiated. The intended semantics is that 
each instance of a generic declaration declares a new object of the original generic object type, for 
example, an instance of  a generic type declaration has the effect of a type declaration, an instance 
of a generic procedure declaration has the effect of a procedure declaration, and so on. 

The semantic transformations of the dialect describe this semantics as follows. The main rule 
replaceGenerics searches in the parse tree of the dialect program for occurrences of the syntactic 
form DeclarationsAndStatements (i.e. the body of a Turing language scope), and within each such 
occurrence (i.e. scope) finds each generic declaration. It then replaces the remainder of the scope 
of the generic declaration by the same scope with the generic declaration removed and instances 
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% Generic dialect of Turing - allows arbitrary generic declarations 

% Syntactic forms 

define declaration 
choose 

[genericDeclaration] 
[instanceDeclaration] 
[constantDeclaration] 
[typeDeclaration] 

, = =  

[moduleDeclaration] 
end define 

% new dialect 
% declaration forms 
% original Turing 
% declaration forms 

define genericDeclaration 
order 

gener ic  [id] ( [list id] ) 
[declaration] 

end define 

define instanceDeclaration 
order 

i n s t a n c e  [id] : [id] ( [list id] ) 
end define 

% Semantic transformations 

rule replaceGenerics 
replace [declarationsAndStatements] 

gener ic  Gname [id] ( Formals [list id] ) 
Decl [declaration] 

RestOfScope [declarationsAndStatements] 

end rule 

by 
RestOfScope 

[fixlnstantiations Gname Formals Decl] 

rule fixlnstantiations Gname [id] Formals [list id] Decl [declaration] 
replace [declaration] 

ins tance  Iname [id] : Gname ( Actuals [list id] ) 
by 

Decl [simpleSubst Gname Iname] 
[simpleSubst Formals Actuals] 

end rule 

rule simpleSubst Old [id] New [id] 
replace [id] 

Old [id] 
by 

New 
end rule 

Fig. 5. TXL description of the generalized generic dialect of Turing. 

of  the generic replaced by instantiations of  the generic. The actual replacement of  instances with 
instantiations of the body is achieved by the second transformation rule, f ix Ins tant ia t ions .  

Given as parameters the name of a declared generic, its formal parameter list and its body 
declaration, t he f i x Ins tan t ia t ions  rule replaces each declaration of  an instance of the generic in the 
scope of  its application with a copy of  the generic's body in which the name of the generic 
declaration is replaced by the name of  the instance declaration and the formal parameter names 
of  the generic have been replaced by the actual parameters given in the instance. 
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Both the substitution of the instance name for the generic name and the substitution of the 
actuals for the formals is achieved by the last transformation rule, simpleSubst. This rule simply 
replaces each item in its first parameter (which may be a list) by the corresponding item in its second 
parameter over its range of application. For the sake of presentation, the items in instance actual 
parameter lists have been limited to identifiers in this example. In practice, arbitrary expressions 
and type definitions would more likely be allowed in the dialect. 

As an example of the kind of transformation done by TXL on a source program of the generic 
dialect, consider the bigStackOfString example given earlier. Given the TXL specification of Fig. 
5 and the bigStackOfString example as input, the TXL processor would output the Turing language 
result: 

% Instantiate and use a type for big 
% stacks of strings 

const bigDepth := I00 

type bigStackOfString : 
record 

depth : 0..bigDepth 

contents : array l..bigDepth of string 
end record 

var bsl, bs2 : bigStackOfString 

Of course, a more reasonable generic characterization of the stack data structure would be as 
an abstract data type complete with the operations Push, Pop and Top. Because our generic dialect 
allows generics of any kind of Turing declaration, we can also do this within the dialect by making 
a generic Turing module declaration: 

generic Stack (someSize, someType) 
module Stack 

export (Push, Pop, Top) 

vat depth : 0..someSize := 0 

var contents : array l..someSize of someType 

procedure Push (element: someType) 
pre depth < someSize 
depth := depth + 1 
contents (depth) := element 

end Push 

function Top :' someType 

pre depth > 0 

result contents (depth) 
end Top 

procedure Pop 

pre depth > 0 
depth := depth - 1 

end Pop 
end Stack 
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Instances of the generic module Stack would then themselves be modules with the operations 
Stacklnstance.Push, Stacklnstance.Pop and Stacklnstance.Top, for example: 

% Instantiate and use a couple of stack modules 
const smallSize := i0 
const bigSize := I00 

% First, a simple stack of strings 

% This time, each instance of the generic is itself a complete module 
instance SmallStringStack : Stack (smallSize, string) 

% Use the string stack module a bit 
SmallStringStack.Push ("Hi there") 
SmallStringStack. Push ("Hello yourself") 

SmallStringStack. Pop 
put SmallStringStack.Top % outputs "Hi there" 

% Next, an integer expression evaluation stack 

instance IntStack : Stack (bigSize, int) 

% Procedure to perform additions in the evaluation stack 

procedure Add 
const rightOperand := IntStack. Top 
IntStack. Pop 

const leftOperand := IntStack. Top 

IntStack. Pop 

IntStack. Push (leftOperand + rightOperand) 
end Add 

% An example calculation using the evaluation stack 
IntStack.Push (I0) 
IntStack.Push (47) 
Add 

put IntStack. Top % outputs 57 

Using the dialect transformation rules in Fig. 5, TXL would transform each of the instances in 
this example into a separate module, and the whole result would look like: 

% Instantiate and use a couple of stack modules 

const smallSize := I0 
const bigSize := 100 

% First, a simple stack of strings 
% This time, each instance of the generic is itself a complete modul4 
module SmallStringStack 

export (Push, Pop, Top) 

var depth : 0..smallSize := 0 
var contents : array l..smallSize of string 

procedure Push (element: string) 
pre depth < smallSize 
depth := depth + 1 
contents (depth) := element 



end Push 

function Top : string 
pre depth > 0 
result contents (depth) 

end Top 

procedure Pop 
pre depth > 0 
depth := depth - 1 

end Pop 
end SmallStringStack 

% Use the string stack module a bit 
SmallStringStack. Push ("Hi there") 

SmallStringStack. Push ("Hello yourself") 
SmallStringStack. Pop 
put SmallStringStack. Top % outputs "Hi there" 

% Next, an integer expression evaluation stack 

module IntStack 

export (Push, Pop, Top) 

vat depth : 0..bigSize := 0 
vat contents : array l..bigSize of int 

procedure Push (element: int) 

pre depth < bigSize 

depth := depth + 1 
contents (depth) := element 

end Push 

function Top : int 

pre depth > 0 
result contents (depth) 

end Top 

procedure Pop 
pre depth > 0 

depth := depth - 1 

end Pop 

end IntStack 

% Procedure to perform additions in the evaluation stack 

procedure Add 
const rightOperand := IntStack. Tcp 
IntStack. Pop 
const leftOperand := IntStack. Top 

IntStack. Pop 
IntStack. Push (leftOperand + rightOperand) 

end Add 

% An example calculation using the evaluation stack 

IntStack. Push (i0) 
IntStack. Push (47) 
Add 
put IntStack.Top % outputs 57 

L05 
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Although simplistic in its syntax and transform, this generic dialect in fact provides full static 
parametric polymorphism in the sense of Cardelli and Wegner [10]. While at first glance one would 
assume that TXL dialects are limited to such static features, in fact full dynamic polymorphism 
is achievable using a more complex transformation that uses pointers and records to represent 
dynamically polymorphic objects. 

6. SCOPE AND LIMITATIONS OF THE TECHNIQUE 

The range of possible transformations far exceeds the simple examples shown in this paper. TXL 
is capable of arbitrary general pattern matching, recursive transformations, arbitrary code motion, 
generation of unique new identifiers and reference to auxiliary support routines. It has been used 
to specify and implement several dialects of the Turing programming language including a complex 
arithmetic dialect [11], an object-oriented programming dialect with object types. Polymorphism, 
inheritance and dynamic binding [12] and a SNOBOL-Iike pattern matching dialect [11]. TXL has 
also been used with base languages other than Turing to prototype the T'NIAL dialect of the NIAL 
programming language [13], the Abacus concurrent programming language [14] and a few simple 
dialects of Pascal. 

The Turing programming language is particularly well suited as a base language for dialects 
because of its relative lack of syntactic (in particular, its lack of ordering restrictions on declarations 
and statements), its value-inherited type inference and its ability to reference external routines. 
While the lack of any of these base language features would not in theory restrict the range of 
dialects that can be described, in practice they do help to keep the descriptions of new dialects 
elegant, concise and readable. 

One problem with the general approach of language implementation by preprocessor is the 
difficulty in providing error diagnostics that are related to the original source when the base 
programming language processor detects errors in the transformed result. Although a correspond- 
ing source location can often be found using a relatively simple source coordinate map such as that 
implemented by the C preprocessor using line-and-file directives, it can be very difficult to relate 
the semantics of the base language error message to the semantics of the dialect program, 
particularly if the dialect implements a fundamentally different programming paradigm. 

The range of dialects that can be described using TXL is restricted to some extent by the power 
of the base language chosen. For example, using Turing or any other Pascal-like programming 
language as a base does not allow us to describe a dialect containing the paradigm of program 
self-reference, because no mapping to base language source can successfully introduce that new 
concept into the execution of the resulting base language program. 

TXL is most suitable for rapid prototyping of new programming constructs, notations and 
dialects, the transformational power of TXL has been shown to be equivalent to that of general 
Turing machines [11], thus the range of dialects that can be implemented using TXL is in theory 
limited only by the bounds of computability. All compiling tasks, up to and including code 
generation, can in theory be specified and implemented as TXL transforms. In practice, however, 
TXL's range of application is limited by the complexity of the transformation rule sets, which can 
be very great for dialects such as Objective Turing [12], and the performance of the rule interpreter, 
which uses a unification algorithm similar to that used in Prolog implementations. As demonstrated 
by the examples in this paper, it is relatively easy to make working transformations for new features 
whose semantics are well understood as run time models, but it is very difficult to make efficient 
ones. In the end, that final task is best left to professional programming language implementors. 

7. SUMMARY 

We have described a general technique for rapid prototyping of significantly different dialects 
of an existing base programming language. The technique uses a very high level rule-based 
specification language called TXL to describe the syntax and semantics of the dialect. In TXL, the 
syntactic forms of the dialect are described by giving new syntactic form definitions to replace 
existing syntactic forms of the base language, and the semantics of the dialect are described 
separately using a set of applicative syntactic transformation rules that transform the syntactic 
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f o r m s  o f  the  d ia lec t  to s e m a n t i c a l l y  e q u i v a l e n t  syn tac t i c  f o r m s  o f  the  base  l anguage .  A d ia lec t  

p r o c e s s o r  t ha t  a u t o m a t i c a l l y  i m p l e m e n t s  p r o t o t y p e  p r e p r o c e s s o r s  fo r  l a n g u a g e  d ia lec t s  specif ied in 

T X L  has  been  used  to i m p l e m e n t  severa l  d ia lec ts  o f  the  T u r i n g  p r o g r a m m i n g  l anguage .  
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