
STAC: Software Tuning Panels For Autonomic Control

Elizabeth Dancy and James R. Cordy

School of Computing,
Queen’s University,

Kingston, Ontario, Canada
{dancy, cordy}@cs.queensu.ca

Abstract

One aspect of autonomic computing is the abil-
ity to identify, separate and automatically tune
parameters related to performance, security,
robustness and other properties of a software
system. Often the response to events affecting
these properties consists of adjusting tuneable
system parameters such as table sizes, time-
out limits, restart checks and so on. In many
ways these tuneable parameters correspond to
the switches and potentiometers on the control
panel of many hardware devices. While mod-
ern software systems designed for autonomic
control may make these parameters easily ac-
cessible, in legacy systems they are often scat-
tered or deeply hidden in the software source.

In this paper we introduce Software Tun-
ing Panels for Autonomic Control (STAC), a
system for automatically re-architecting legacy
software systems to facilitate autonomic con-
trol. STAC works to isolate tuneable sys-
tem parameters into one visible area of a sys-
tem, producing a resulting architecture that
can be used in conjunction with an auto-
nomic controller for self-maintenance and tun-
ing. A proof-of-concept implementation of
STAC using source transformation is presented
along with its application to the automatic re-
architecting of two open source Java programs.

Copyright c© 2006 Elizabeth Dancy and James R.
Cordy. Permission to copy is hereby granted provided
the original copyright notice is reproduced in copies
made.

Use of the new architecture in monitoring and
autonomic control is demonstrated on these ex-
amples.

1 Introduction

The time is approaching when the rate of
software development so outweighs human ex-
pertise that there may be a software mainte-
nance crisis. The domain of autonomic com-
puting aims to proactively combat this prob-
lem by working towards the production of self-
controlling and self-maintaining systems. How-
ever, it is futile to attempt to completely
replace all existing software with autonomic
equivalents because this just leaves us in a dif-
ferent race against time. It therefore seems
pertinent to look at ways to automate the con-
version from legacy systems to autonomic sys-
tems. Facilitating self-maintenance and self-
tuning requires access to numerous tuneable
system parameters. At present, these parame-
ters are often scattered throughout source code
and sometimes hidden, forcing each access to
involve a costly search through the code.

In order to automate the re-architecture of
programs so that the tuneable parameters are
accessible without a search, we propose STAC,
Software Tuning Panels for Autonomic Con-
trol, a system to automatically re-architect
legacy source code with respect to marked-up
tuneable parameters. The result is a system
with identical functionality that provides the

maintainer, autonomic or otherwise, with lo-
calized access to these tuneable parameters for
instrumentation, tuning and maintenance pur-
poses. In STAC, tuneable parameters are lim-
ited to scalar types in order to bound the scope
of the project. However, in practice tuneable
parameters could be any system variables.

STAC has two main steps. First, tuneable
parameters of interest are identified and ref-
erences to them traced throughout the source
code. Second, a new program module is gen-
erated that encapsulates all actions on the pa-
rameters during program execution. In STAC
this new module is called the Control Panel.

The remainder of this paper is organized as
follows. Section 2 describes the general ap-
proach and implementation of STAC. Section 3
provides examples of STAC re-architectures on
two real world open source applications. Sec-
tion 4 demonstrates three applications of the
STAC Control Panels created for these sys-
tems. Section 5 provides a synopsis of re-
lated work and Section 6 analyzes the results
of STAC and suggests future work in the area.

2 Approach

The prototype STAC re-architecture process
for Java programs consists of a Java Front End
in combination with a series of source trans-
formations written in the TXL programming
langauge [6]. These language choices were de-
liberate but not necessary as STAC could be
implemented using other languages.

To begin the STAC implementation, the
original source code is normalized for transfor-
mation. To do so, the original Java software
package is first sent through a Front End File
Filter, where it is sorted down into only source
code files and organized into one contiguous
text file to prepare the input for TXL transfor-
mation. Special XML tag delimiters separate
each source file and other tags denote where
each original source folder begins and ends so
that the package can be re-created following
re-architecture.

The merged source text file is run through a
series of transformations which are responsible
for the actual re-architecting of the source code
and the generation of the Control Panel mod-

Original Java Files with
Markup

Front End Java
File Merger

Front End Java
File Splitter

Contiguous Text File
of ALL Java Files

Reference
Transformation

Reference
Identification
and Tracing

Reference
Identification
and Tracing

Control
Panel

Generation

Contiguous Text File
with Control Panel

Modified Java Files
plus Control Panel

Figure 1: Overview of the STAC Process

ule housing the tuneable parameters of interest.
Finally, the transformed contiguous source file
is passed back into the Front End to be sorted
into its original file and package structure, with
the addition of the Control Panel. Figure 1 out-
lines this process graphically.

The most challenging technical parts in Fig-
ure 1 are the TXL transformations which iden-
tify and transform the tuneable parameter ref-
erences, as well as those transformations which
create the Control Panel module. Details of
these two main parts are explained below. It
is pertinent to note that before this stage, a
series of unique renaming transformations are
applied to distinguish different variables with
the same name.

In the STAC prototype the user must man-
ually mark up the declaration of each tuneable
parameter of interest directly in the source code
using XML tags. After this step, the remain-
der of the transformation process is automated
and hidden from the user.

The main architectural changes to a system
are the addition of a new program module, the
Control Panel, and the redirection of tuneable
parameter references to the Control Panel. Fig-
ure 2 is a conceptual view of how a system is
re-architected using STAC. The left-hand side
shows the tuneable parameter references (rep-
resented by hollow circles) before the transfor-
mation. After the transformation, these ref-
erences refer to the newly generated Control
Panel module shown at the bottom.

2

Before After

Figure 2: STAC Re-Architecting

2.1 Control Panel Generation

Creating the Control Panel class requires track-
ing of the tuneable parameters by searching for
the XML markup around each tuneable param-
eter’s declaration. Each marked up parame-
ter is added to the Control Panel, one at a
time. Each variable of interest is represented
in the Control Panel as its own class, named
for the tuneable parameter it represents. The
left-hand side of Figure 3 shows an original
Java class with a variable numUsers which has
been marked up. The right-hand side of Fig-
ure 3 shows the resulting Control Panel for nu-
mUsers.

Not all Control Panel classes are as simple as
that in Figure 3. In a typical program, several
tuneable parameters would be marked up and
each of those may have many references to it.
Due to Java inheritance, tuneable parameters
that are created in subclasses of other classes
containing tuneable parameters may have other
objects that refer to them. The Control Panel
must create a separate reference class for each
copy of a variable which is explicitly created in
the code to accommodate for this inheritance
property.

For example, in the class InteractiveSystem
of Figure 3 we have marked up the global vari-
able numUsers as a tuneable parameter be-
fore the transformation. If more than one in-
stantiation of InteractiveSystem were created
in the program, then the Control Panel must

Figure 3: NumUsers Markup and Control
Panel Creation

contain a new copy of numUsers for each in-
stance. Other extensions to our Control Panel
generation handle other Java scenarios which
would allow another pointer to the same nu-
mUsers variable. Figure 4 shows an example
generated Control Panel with nesting to han-
dle the situation where there is more than one
copy of a tuneable parameter. In this case, an
instance of InteractiveSystem named Interac-
tiveSystemInst is created in the Java program
and needs to have its own copy of numUsers in
the Control Panel. If a second instance of Inter-
activeSystem were created, say InterActiveSec-
ondInst, the Control Panel would add another
class where InterActiveSecondInst would have
its own numUsers class nested inside of it, and
so on.

2.2 Reference Changing

While the above Control Panel serves its pur-
pose, thus far the variables in the Control Panel
classes are completely separate from those that
were originally in the code. They must be
linked with the code in order to serve any
real use. The second major step in the TXL
transformation involves changing all the origi-
nal program references to the tuneable param-
eter variables to point to the Control Panel.
The biggest challenge of this step is ensuring
semantic equivalence.

The TXL transformation must therefore cre-
ate a suitable, semantically equivalent refer-
ence, which is also syntactically valid, to in-
sert in the place of all original references to the

3

Figure 4: Control Panel with Nesting

marked up parameters. For example, a con-
structor which is marked up must be replaced
with a call to the constructor method in the
Control Panel. Even though references may be
of the same kind (such as constructors, assign-
ment statements or variable calls), they may
take on several different forms. For example,
a constructor in Java can be either a construc-
tor with an initialized variable or one without
an initial value given. These can be further
broken down into those which list several vari-
able names in the same constructor, and those
which declare only one. Each kind of reference
may therefore require several different transfor-
mation rules to handle the different cases.

The left-hand side of Figure 5 shows two
kinds of constructors marked up for transfor-
mation by the STAC tool. The right-hand
side shows how they have been changed by the
STAC transformation in the source code to re-
fer to the Control Panel generated by STAC.

No matter how complex the reference, the
TXL transformations must have rules which
can match and transform all forms of references
(within the scope of this project) to point to

Figure 5: Reference Changing

the Control Panel. Furthermore, the transfor-
mation must be careful not to add any unnec-
essary source code, to ensure that the code re-
mains maintainable. The next section explores
this complicated issue through the use of two
real-world examples.

3 Examples

Once a system has been transformed by STAC,
a user (or autonomic controller) has complete
control over the tuneable parameters that have
been marked up. This section details the entire
re-architecting process through the use of a two
real-world open source examples. Each original
architecture is first outlined and then a STAC
transformation is stepped through.

In addition to the examples detailed be-
low, the STAC transformation has been run
on other Java programs with varying archi-
tectures. Tests were run on STAC through-
out the process including regression tests and
rule-based functional tests on the TXL code
to ensure that a variety of cases can be han-
dled. Tests of functionality were carried out
on the Java source code both before and after
the transformation in order to check semantics
preservation.

Because TXL rules are encoded as a set of
formal re-write rules, a more formal validation
of semantics preservation could also be carried
out independently using an an inductive proof.
However, this would be time-consuming and is
well beyond the scope of the STAC proof of
concept presented in this paper.

4

3.1 JHotDraw

JHotDraw [4] is an open source graphical user
interface Java application that serves as a tool
for creating graphical editing programs. One
can also use it as a graphics editor itself. The
source code for JHotDraw is openly available
and comes packaged in several layers. In to-
tal, the JHotDraw version used for STAC con-
tains eighteen Java source code packages, in-
cluding class files, jar files and required images.
It contains approximately 32,500 (total) lines
and 16,000 logical lines of code after it has been
filtered in preparation for the STAC transfor-
mation. JHotDraw is chosen as a proof of con-
cept system for STAC because it is a widely
used medium-sized Java application which is
also available as open source.

3.1.1 Tuneable Parameters

Once JHotDraw has been selected and ana-
lyzed for its main properties, the discovery of
tuneable parameters can begin. In the present
prototype this identification is performed man-
ually. Once found, the constructor of each
tuneable parameter is marked up by hand. In
the STAC proof-of-concept prototype, candi-
dates for parameters of interest must meet the
condition that they are either stored as a scalar
type or in a Vector.

Since the class DrawApplication.java is a
class included in every application in JHot-
Draw, we start there. One possible candidate
is the int winCount, declared as a static global
variable, representing the number of open win-
dows in the application at one time, and ini-
tialized to zero in DrawApplication. This will
serve as the first example because winCount is
contained in one class and keeps track of sev-
eral different components during runtime. The
declaration for winCount is shown in Figure 6
and its references are also highlighted.

3.1.2 Transformation

The XML tags in Figure 6 mark winCount as
a tuneable parameter. After the transforma-
tion, the class DrawApplication.java is changed
in the following ways: it imports the Control
Panel (stored in a new package in the same
home directory as the entire source package),

Figure 6: WinCount Declaration and Refer-
ences

and all the references to winCount, including
the constructor, have been changed to refer
to the Control Panel (Cpanel) class. In addi-
tion, the XML markup has been removed. Fig-
ure 7 shows this change, while Figure 8 shows
the new Cpanel class. Notice the constructor,
accessor and mutator methods for winCount
within the class Cpanel.winCount. These are
generated for every tuneable parameter which
is marked up, giving a maintainer the power to
modify and create variables within the Control
Panel.

3.2 Babylon Chat

Babylon Chat [1] is an open source Java in-
stant messaging system which can be used for
internet conferences or for group meetings on

5

Figure 7: WinCount References After Trans-
formation

Figure 8: Cpanel Class For WinCount

a local host. It boasts special white board ca-
pabilities to allow all parties to view an image
during a group conference. It also allows for
public and private chat rooms and user authen-
tication. Babylon Chat can be run as a Java
applet within a web page or as a Java applica-
tion. It is simple to set up a local host on one
computer.

3.2.1 Tuneable Parameters

The same features of Babylon Chat which dif-
ferentiate its architecture from that of JHot-
Draw also lend it to the use of different styles
of tuneable parameters. Because it is not as
clearly modularized, Babylon Chat uses many
global lists and shared global variables to keep
track of system parameters. Examples include
variables which keep track of the online traffic

and chat room variables. For instance, the vari-
ables representing window height and width for
each application are both stored globally in the
Babylon.java class. These can be used in a sim-
ilar way to how the winCount variable was used
in the last section.

There are two main complications associated
with the Babylon Chat code in comparison
with the more structured JHotDraw code. The
first is that the most useful global attributes
are stored in Vectors. Because our proof of con-
cept of STAC was originally designed to moni-
tor only scalar types, Vectors were of little use
but realistically of a lot of interest. Therefore,
the STAC transformations (in TXL) were al-
tered during the implementation phase to in-
clude the ability to mark up a Vector. In
keeping with the scalar type limitation how-
ever, only the attribute Vector.size() is actu-
ally monitored within the Control Panel. This
allows the program to track the number of ele-
ments currently inside of a Vector (by using the
trimToSize() and size() methods in the Vector
class) and watch as it grows and changes. In a
way this creates a second reference to the Vec-
tor which can be thought of as a copy.

The second pertinent complication associ-
ated with the source code structure of Baby-
lon Chat is that because many variables are
stored and passed globally, there are many
more references to tuneable parameters scat-
tered throughout the program. This presents
the opportunity to test STAC’s true capabili-
ties at changing all types of references. As a
consequence of the large number of references,
there are also many different references to the
same variable name. This requires an added
layer of transformation by STAC to ensure that
each reference to the Control Panel represents
a unique instance and consequently, unique re-
naming and updating of these names across the
source code is required. This is a major tech-
nical challenge of STAC and is detailed in the
examples later in this section.

3.2.2 Transformation

Consider the variable clientId, declared as a
global in the class babylonPanel. Initially, the
value of clientId is set to 0. The purpose of
this variable is to assign a new clientId to each

6

client thread so that they can be referenced by
this index. ClientId may not seem very useful
for monitoring or tuning but this example illus-
trates how one scalar type can require dozens
of reference replacements as well as unique re-
naming by the STAC transformation in order
to work properly. It should be noted that on
a larger scale this example poses a referencing
challenge because of interface implementation
within babylonPanel. This is discussed in more
detail in Section 6.2.

To understand the renaming challenge of
this transformation, consider that many unique
classes refer to a clientId. For example, the
class babylonClient declares a mainPanel which
is of type babylonPanel and therefore must
have its own copy of clientId. If the Control
Panel were to create just one copy of main-
Panel and within that, one variable for clien-
tId, there would be just one copy when in fact
there should be one for each mainPanel.

To resolve this conflict, the STAC transfor-
mation has a detailed process that checks the
names of all marked up parameters as well
as the Objects which may reference their own
copy of each parameter. In this case, this
means renaming each mainPanel as a unique
string called mainPanel# where the number
sign is filled in with a number from 1-9 (Fig-
ure 9). Such name changes must be propa-
gated throughout each class. This works well in
Babylon Chat because the Panel declarations
are local to each class. Thus, it is a matter
of finding the unique renaming associated with
a class and then changing all other mainPanel
references within that class to the appropriate
mainPanel#. Note that this form of Control
Panel incorporates nested if-statements as a
way to decipher which Object called a Control
Panel method at runtime. This also requires
adding a parameter representing the calling
Object’s name to the methods in the home class
(class where the variable is originally declared
and marked up). After the initial method uses
the parameter representing the calling Object’s
name, it is replaced with null in the subsequent
method calls.

Now that a difficult example of scalar types
has been discussed, it is pertinent to show some
Vector transformations. Consider the variable
userList, which is declared as a Vector in the

Figure 9: Control Panel with Renaming

class babylonClient.java. This variable stores
information about the active users online dur-
ing any given time. By using STAC to create a
Control Panel capable of tuning the size() at-
tribute of the userList, it is possible to monitor
the number of active users online at one time.

The first step in this process is to mark up
the tuneable parameter declaration. Because
this tuneable parameter is a Vector type rather
than a scalar type, special <vector param>
tags are used, to indicate to the transforma-
tion rules that the size() attribute of this par-
ticular Vector is to be added to the Control
Panel. Figure 10 shows the initial markup in
the babylonClient class. This example is inter-
esting because the babylonClient class serves as
a very central Object in the Babylon Chat sys-
tem. In particular, each babylonPanel has a
specific client associated with it, declared as a

7

Figure 10: Tuneable Parameter Initial Markup
of Bablylon Chat Client Class

global variable in the babylonPanel class. Fur-
thermore, many of the other classes create their
own Panel to reference when adding attributes
to the system. Each of these panels abstractly
has its own copy of a client, as discussed in
the previous example using clientId. Therefore,
this example contains three levels of references
which must be changed to either point to the
Control Panel or be renamed to preserve se-
mantics.

These necessary reference changes take place
during the reference tracing and identification
phase of the STAC process. Similar to the
mainPanel example, each client needs to be re-
named and then these renamings must be prop-
agated correctly to avoid confusion in other
classes where the client variable is used. For
example, if the client variable in class babylon-
Chat becomes client1, then every class that ex-
tends babylonChat or instantiates a new baby-
lonChat Object must propagate this change to
its client reference.

4 Applications

Once the STAC tool has been applied, the re-
sulting Control Panel provides complete isola-
tion of tuneable parameters and acts like the
harness under the hood of a car, allowing lo-
calized tuning and complete control in a cen-
tral location. The uses of the Control Panel
are many and include variable monitoring and
both static and dynamic variable tuning.

Monitoring of tuneable parameters can be
implemented as a visualization of parameters

Figure 11: Visualization of JHotDraw Win-
Count

at runtime. To demonstrate this for STAC, we
have chosen to use JFreeChart [3], a graphics
package freely available that has the capabil-
ity to create dynamic time-based plots at run-
time. With JFreeChart, the Cpanel class can
be instrumented and then visualized dynami-
cally. Going back to the JHotDraw example,
where the winCount variable was marked up
and isolated in the Control Panel, only a few
simple lines of instrumentation code are needed
in the Control Panel to implement dynamic
visualization. The winCount variable simply
keeps track of the various JHotDraw applica-
tion windows, because in a drawing editor it
may be necessary to have several windows open
at one time. Figure 11 illustrates a screen shot
of the dynamic visualization of several JHot-
Draw windows running simultaneously. The
four windows are all separate applications of
JHotDraw. The dynamic plot shows time in-
creasing as each new window is opened, result-
ing in a stepwise function because they were
opened at corresponding intervals. If several
more were opened, the value of the winCount
variable would increase accordingly. If any of
the windows were closed, it would decrease and
this would be visualized in real time.

Figure 12 shows the minimal instrumenta-
tion necessary inside the Cpanel class to ex-
tract this information. Inside the set() method
for winCount, all that is needed is the sim-
ple writing of values to a buffer which is
read by the JFreeChart graphing program as
data. Every time the value of winCount is
updated, this value is written out, and then

8

Figure 12: Control Panel Instrumentation for
JHotDraw WinCount Visualization

displayed by the dynamic plot shown above.
Note that originally there were four references
to winCount within the DrawApplication class.
Without the STAC re-architecture, the system
would require four different references every
time it wanted to change the winCount vari-
able. Keeping in mind that this is a notably
simple example, scaling this up would provide
a tremendous increase in control as well as a
decrease in necessary maintenance time.

In addition to parameter visualization, the
STAC Control Panel can be used to tune each
parameter of interest either retroactively, after
a visualization, or on-the-fly at runtime. For
very accurate tuning of specific values, or for
tuning which requires some sample data before
analysis, static tuning can be applied to the
Control Panel after run-time. The isolation of
tuneable parameters aids in this process, elimi-
nating multiple program accesses, although for
co-dependent variables some program manipu-
lation may be required.

The dynamic tuning possibilities enabled by
STAC are also intriguing. Through simple
value comparison, a tuneable parameter can be
monitored until it goes beyond a certain thresh-
old and then reset to a more desirable value.
This does not apply well to winCount because
resetting the winCount would not serve a useful
purpose for system tuning. However, sanity-
checking the values in the Control Panel and
then redirecting the program to correct an er-
ror is also possible and can be nicely illustrated
using the winCount variable.

Suppose that during program execution,
one wanted to minimize overcrowding of the

Figure 13: Adding Threshold Checking in the
Control Panel

workspace with respect to JHotDraw applica-
tion windows. To do so, one could dynami-
cally tune the Control Panel to monitor the
winCount variable and react if the number of
open JHotDraw Windows becomes larger than
a certain threshold size by tiling the rest of the
Windows equally and setting the current Win-
dow on top. To do so, all that is needed are
some simple additions to the Control Panel.

Within the Control Panel, a simple Robot ob-
ject can be created. The Robot class, found in
the AWT package, allows a Robot Object to be
created which can itself create native events in
Java at runtime. Therefore, this allows us to
mimic a user, in keeping with the autonomic
undertone of this experiment. The Robot can
then be instantiated and can perform a specific
autonomic action whenever the winCount vari-
able goes above its threshold. Figure 13 shows
the Control Panel with a Robot being created
for a threshold of 4. Figure 14 details the Desk-
top view both before,when the number of open
windows is 4 , and Figure 15 shows after, when
there are five open windows.

As an extension to the above example, the
Control Panel can continue in a loop, moni-
toring the current value of the winCount vari-
able the entire time the application windows
are open. If the number of Windows gets be-
yond seven, then the tiling could be considered
too crowded and all but the current Window
will be minimized. Because the loop will con-
tinue monitoring the number of Windows, if
the user closes a JHotDraw application window
later, the tiling will re-appear. Figure 16 shows

9

Figure 14: Before Dynamic Tuning of Desktop

Figure 15: After Dynamic Tuning of Desktop

the Desktop when the number of open Win-
dows has reached seven and all but the current
Window have been minimized. Figure 17 shows
later on in the application, when one window
has been closed, and the tiling has been reset.

Although there are times when allowing a
user to change or create a variable within the
Control Panel could be dangerous and poten-
tially allow corruption of parameters, a solu-
tion to this actually presents itself from within
the Control Panel. Consider the case where the
Control Panel is used to check for and handle
corruption of variables caused by remote ac-
cess. To implement this is strikingly simple.
Each time a legal set() is called for a tune-
able parameter, this value is stored within the
Control Panel. Every time a get() is called af-
ter this, its return value is compared with this
record of the last legal set(). If the two val-
ues differ, the value is reset to the last legal
call. This presents a simple, elegant solution

Figure 16: Minimized Windows

Figure 17: After Re-tiling

to the same security threat which is implied by
allowing users access to the variables within the
Control Panel.

Some of the potential of STAC has been in-
vestigated and confirmed in this section us-
ing examples of transformations on both JHot-
Draw and Babylon Chat. However, there is still
much work to be done. Section 6.2 examines
what limiting assumptions have been made to
this point, and what future projects may evolve
from the current STAC project.

5 Related Work

The STAC project draws on three main areas
of current research in computing. These are
autonomic computing, automated refactoring,
and source transformation.

Although the domain of autonomic comput-
ing is relatively new, there are a few projects

10

Figure 18: Autonomizing Legacy Systems Ap-
proach (from [8])

which parallel STAC in their attempts to im-
plement self-monitoring and tuning behaviours
in existing systems. One of the most closely re-
lated projects is Kaiser et. al’s work on Auton-
omizing Legacy Systems [8]. In their system,
Kaiser et. al develop a protocol for adding a
series of probes to legacy systems which then
deliver instrumentation information to a series
of gauges that perform monitoring functions
based upon this information. The implementa-
tion is not trivial. It relies upon a layered archi-
tecture with the above mentioned probes col-
lecting information, the gauges interpreting it,
and the effectors performing reconfigurations
and system adaptations as necessary. This sys-
tem is shown in Figure 18.

The system is noteworthy for its detailed in-
strumentation of a legacy system, transform-
ing it into a system which allows for autonomic
control. The ideas behind this particular ex-
ample draw many parallels with the implemen-
tation of STAC. However, the STAC solution
is able to add only one module to any soft-
ware system, which encapsulates the idea of
the probes, gauges and effectors in the work
of Kaiser et. al. STAC can be thought of as
combining these layers into one layer, the Con-
trol Panel. In a way STAC is working on a
subset of the problem tackled by Kaiser et. al.

The reference identification and tracing of
STAC can be likened to the aspect-oriented
style of programming, but produces the re-
architecture without the separation of code into
cut points, thus maintaining the original code
structure and making the maintenance of the

result much simpler. Also, there is no need
to recognize underlying scattering or distri-
bution of the tuneable parameters in STAC,
as one must do to identify the join points
in aspect-oriented programming, because the
re-architecture is completely automated based
solely on the markup of the declaration of vari-
ables of interest.

The technical challenges of implementing
STAC can also be compared to those in aspect-
oriented programming, which could in princi-
ple be used to implement the rearchitecture
done by STAC. However, the problem of lo-
cating and tracing every possible reference to
a parameter of interest is complex, making it
difficult to identity appropriate syntactic cut-
points. Moreover, once rearchitected, STAC’s
implementation of the Control Panel as a sep-
arately linked module rather than an aspect
has the additional advantage that the Control
Panel can be maintained independently of the
program itself, with no dependence on source.

Automated refactoring techniques tackle
technical challenges similar to those in STAC,
as they work to re-structure code to improve
performance or maintainability and STAC has
an analagous goal of re-architecture. Srini-
vasan [10] provides a Modularity Toolkit to au-
tomatically re-modularize legacy source code.
The system first standardizes the code, elimi-
nating discrepancies, much like the automatic
renaming in STAC. After this, the Toolkit
breaks apart the existing modules. Next, it
carefully analyzes the scope and localization
of specific references and variables, using clus-
tering to propose and create new, more effec-
tive modules. This, again, is followed in STAC
during the reference tracing phase. Once these
modules are put into place, the code is searched
for dependencies within and between modules,
resulting in a re-modularized piece of code.
Much of the implementation of the Modular-
ity Toolkit relies upon source transformation,
particularly with TXL, which leads into the fi-
nal domain of related work for this project.

TXL [6] is a programming and rapid pro-
totyping language designed to address source
transformation problems of a structural na-
ture. It uses a hybrid rule-based and func-
tional programming style to transform input
data which must be represented in tree format.

11

TXL has a wide spectrum of possible uses. Key
to the STAC experiment are TXL’s capabil-
ities in syntactic manipulation of source code,
specifically uses which aim to select and manip-
ulate only parts of source code with a particular
property or of particular interest. Also critical
is TXL’s potential for agility and adaptability.

Many projects involving source restructuring
must be able to focus in on one part of the code,
essentially working around the rest to leave the
semantics unscathed. In STAC, it is the tune-
able parameters and their references which are
of the most importance. It is therefore desir-
able to investigate how TXL can be used to cre-
ate such a localized focus and ignore the rest
of the source.

This idea has been explored in the use of
TXL to identify clones in source code [7]. The
term clone in this sense refers to identical or
near-identical copies of source code dispersed
through a program or web page. In this case,
an island grammar was crafted to detect clones.
An extractor written in TXL is then used to
“pretty print” the source code islands (contain-
ing possible clones) to improve the accuracy
of a comparator. Specifically, the transform
works by separating source code features by
lines so that the use of the Unix diff command
will be most effective when comparing code.
This promotes the goal of matching clones and
near-miss clones. It is interesting how easily is-
lands can be isolated from the rest of the source
code.

Another TXL technique of particular interest
to our work is agile parsing. In this sense, agile
means “the ability to use a customized version
of the input grammar for each particular anal-
ysis and transformation task” [5]. Specifically,
grammar overrides are used to allow for specific
cases to be addressed in a transformation. The
article also uses an island grammar similar to
that used in [11], again showing how TXL can
be used to focus in on certain aspects of source
code while leaving less interesting bits out.

While we have exploited the use of TXL in
the STAC prototype, other source transforma-
tion systems such as ASF+SDF [12], Strat-
ego/XT [13] or ANTLR [9] could easily serve
as well.

6 Summary and Future
Work

The previous several sections have outlined the
STAC transformation tool in detail and fol-
lowed several example experiments run with
STAC. In doing so, some key strengths and
benefits of the STAC tool have been high-
lighted and important applications have been
discussed. However, there are limitations and
limiting assumptions which must be adhered to
at this time. Such limiting assumptions natu-
rally suggest future work in the area.

6.1 Parallel Projects

STAC can be looked at as part of a larger pack-
age of projects which, when combined, could be
used to automate the entire autonomization of
a system, with respect to tuneable parameters.
The first step of this process is the markup of
tuneable parameters, which in STAC is done
by hand. However, as a parallel project, the
identification and markup of interesting tune-
able system parameters would fit into the pack-
age as the first step. In addition, this kind of
tool would ensure that STAC receives meaning-
ful input to exploit its capabilities and produce
the maximum benefit.

Another critical part of the process which
has only been touched upon in the Examples
section of this paper is the generation and im-
plementation of autonomic controllers. Such
controllers are currently being implemented for
other projects, but generation of controllers
built to work specifically with Control Panels
created by STAC has yet to be explored.

6.2 Current Scope and Natural
Extensions

The scope of STAC presently includes local
and global scalar variables which may or may
not extend across classes and which may also
necessitate several distinct copies at runtime.
The first obvious limitation imposed is that
the variables must be scalar types (with the
exception of Vector objects which may be in-
strumented for their size attribute). A natu-
ral extension of this transformation would be
to look at more general objects as tuneable

12

parameters. Although more complicated, this
has actually been started with the addition of
the Vector markup and isolation in the Con-
trol Panel. This would be a very interesting
follow-on research project we hope to be able
to pursue.

A second, less obvious, limitation is that
STAC can currently miss some kinds of sub-
tle references. Section 2.1 uncovered the possi-
bility of having many different objects sharing
one Control Panel as well as the more simple
case of having just one object using the tune-
able parameters at runtime. For the time be-
ing, this suffices as a proof of concept as STAC
works well to capture most program references
to tuneable parameters of interest. However,
the transformation at present can miss some
references which change when they are passed
as parameters to other objects and methods.
At this time, STAC also does not handle alias-
ing. This is particularly limiting when a tune-
able parameter gets passed into an object con-
structor as a reference and then is changed
during the constructor method and reassigned.
The handle is effectively lost and this affects
the usage of this parameter later in the pro-
gram. To remedy the loss of these references,
it would be necessary to add a pointer to the
object which currently is passing this reference.
This has been successfully done in the transfor-
mation to solve another problem, namely that
of having multiple objects which share several
copies of a tuneable parameter, as in the final
Babylon Chat example. Although this is dif-
ficult in Java, it may be less cumbersome in
other languages.

Java interfaces also presently pose a problem
for STAC whereby the methods which must
be present in a class when it implements an
interface could be automatically changed by
the transformation when extra parameters are
added to keep track of the calling object’s
name. Currently, rules have been added to ex-
clude specific methods from having parameters
automatically added to them and this could be
continued on a case by case basis or alterna-
tively solved exhaustively with rules to handle
all possible interfaces in Java.

Finally, as parallelism is increasingly part of
Java applications, it would be useful for STAC
to have functionality to handle the case where

multiple threads have access to the same vari-
ables and create a race condition. This is con-
sidered future work and would require the use
of Java synchronization mechanisms to guaran-
tee mutual exclusion during tuneable parame-
ter access.

As an additional extension, it is future work
to integrate the entire STAC transformation
into the Eclipse IDE as a plug-in. Along these
same lines, it would be interesting to imple-
ment the STAC tool for languages such as C
or C++, allowing for more systems to be re-
architected and potentially solving some of the
current limitations imposed by using Java. Be-
cause of the choice of TXL as a transformation
language, this should not be too challenging.

6.3 Side Effects on Performance

It is critical to address the question of possible
side effects a STAC transformation may intro-
duce to a system. Of paramount importance
is the potential increase in run time caused by
the numerous code changes and TXL transfor-
mations involved in STAC. To investigate this,
a STAC transformation was run on a simple
command-line Java interest calculator [2]. The
compound interest calculator takes in three ar-
guments from the command line. The first
is the number of years the money will be in-
vested, the second is the monthly investment
amount (in dollars), and the third is the initial
amount deposited (in dollars). The program
then calculates the investment growth and to-
tal amount at a monthly interest rate of eight
percent with thirty percent deducted for taxes.

A small experiment was run on a time-shared
Unix system, with 8GB of memory, and 4 750
Mhz processors in order to investigate the ef-
fect of a STAC transformation on system per-
formance in terms of run time. The exper-
iment compared the run time of the original
code, to that of the code which had undergone
a STAC transformation. The STAC code had
been marked up to isolate the variable amount,
which is representative of the initial amount
deposited. Each program was then given the
same input arguments, growing progressively
larger. The results, given in the two tables be-
low, show that for small amounts there is vir-
tually no difference. However, when very large

13

Input (Years, Monthly, Initial) User Seconds System Seconds
1000,1000,1000 2.0 0.0
5000,5000,5000 6.0 2.0

10,000 , 10,000, 10,000 9.0 4.0
20,000, 20,000, 20,000 17.0 9.0
50,000 50,000, 50,000 43.0 24.0

Table 1: Original Source Code Run Times

Input (Years, Monthly, Initial) User Seconds System Seconds
1000,1000,1000 2.0 0.0
5000,5000,5000 6.0 2.0

10,000 , 10,000, 10,000 10.0 5.0
20,000, 20,000, 20,000 18.0 9.0
50,000 50,000, 50,000 47.0 23.0

Table 2: Run Times After STAC Transformation

calculations are carried out, there is a signifi-
cant difference in the two times, with the STAC
code performing at a slower rate. However, one
must consider that this program calculates in-
terest every month. Therefore, an input value
of 1000 represents 12,000 calculations. As such,
further investigation is needed to determine ex-
actly what causes the slowdown introduced by
STAC, and if this is replicated or exaggerated
in programs which involve user interaction.

In addition, there is a lingering sub-problem
of variable dependencies. During a STAC re-
architecture, a certain parameter may seem
to be isolated within the Control Panel but
throughout the program it may be part of a
chain of variables which are dependent upon
one another. Therefore, changing one of these
parameters within the Control Panel, as can
be done in tuning, may inadvertently cause
changes or errors in the chain of dependent
variables. A challenging future problem would
be to pinpoint this chain of variable dependen-
cies and use it to propagate the changes that
happen from within the Control Panel, to the
variables that depend upon the isolated param-
eter. This however, is a very complex problem
and would have to be done in stages.

6.4 Conclusion

STAC has been shown through proof-of-
concept to be capable of isolating tuneable
parameters inside an automatically generated
Control Panel specific to the given applica-

tion. In doing so, it preserves semantics and
makes minimal local changes in such a way
that the re-architected code remains maintain-
able. The technical challenges of identifying
all of the references to a tuneable parameter
are many. They include recognizing the numer-
ous different categories of references and replac-
ing them with syntactically and semantically
correct replacement references to the Control
Panel. These challenges are compounded by
having multiple objects sharing a tuneable pa-
rameter and having to uniquely rename each
Object throughout the source code. The cre-
ation of the Control Panel methods is no less
challenging, requiring a nested class for every
object instantiation in the source code as well
as a global class where references can be re-
directed when necessary.

A number of applications of STAC have been
identified and illustrated by example. Real-
time visualization of the Control Panel activ-
ities allows for comprehensive system analysis
of a tuning variable which can be used retroac-
tively to make appropriate changes. Further-
more, dynamic monitoring of variables can be
effectively accomplished by the Control Panel
itself, and using simple instrumentation can
be extended to dynamic tuning, mimicking a
human-user. These examples demonstrate our
goal of facilitating independent autonomic con-
trol through automatic rearchitecture.

14

Acknowledgments

This work is supported by an IBM Faculty In-
novation Award and by the Natural Sciences
and Engineering Research Council of Canada.

About the Authors

Elizabeth (Liz) Dancy is a software developer
at the IBM Software Laboratory in Markham,
Ontario and a former Master’s student work-
ing on the STAC project in the Software Tech-
nology Laboratory of Queen’s University un-
der the supervision of James Cordy. She com-
pleted her Bachelor of Computing at Queen’s
as well, with a subject of specialization in Soft-
ware Design. Her research interests include
source transformation, autonomic computing
and software architecture.

James Cordy is the Director of the School
of Computing and Professor of Computing
and Electrical and Computer Engineering at
Queen’s University. From 1995 to 2000 he
was Vice President and Chief Research Scien-
tist at Legasys Corporation, a software tech-
nology company specializing in legacy software
system analysis and renovation. Dr. Cordy
is a founding member of the Software Tech-
nology Laboratory at Queen’s University and
winner of the 1994 ITRC Innovation Excellence
award and the 1995 ITRC Chair’s Award for
Entrepreneurship for his work there. He serves
on a range of software engineering conference
committees and has recently co-chaired several
conferences and workshops including CASCON
2005. Dr. Cordy is an IBM Faculty Fellow
and has been awarded IBM Faculty Innovation
Awards in both 2004 and 2005.

References

[1] BabylonChat.
http://visopsys.org/andy/babylon/.

[2] Compound9 Interest Calculator. http://
www.ping127001.com/java/Compound9.java.

[3] JFreeChart.
http://www.jfree.org/jfreechart/.

[4] JHotDraw 6.0. http://www.jhotdraw.org.

[5] J.R. Cordy. Generalized Selective XML
Markup of Source Code Using Agile
Parsing. In International Workshop on
Program Comprehension, pages 144–153,
2003.

[6] J.R. Cordy. The TXL Source Transforma-
tion Language. Science of Computer Pro-
gramming, 61(3):190–210, August 2006.

[7] J.R. Cordy, T.R. Dean, and N. Synyt-
skyy. Practical Language-Independent De-
tection of Near-Miss Clones. In Proc.
CASCON’04: 2004 IBM Centre for Ad-
vanced Studies International Conference,
pages 1–12, 2004.

[8] G. Kaiser, P. Gross, G. Kc, J. Parekh, and
G. Valetto. An Approach to Autonomiz-
ing Legacy Systems. In Proc. ACM Work-
shop on Self-Healing, Adaptive and self-
MANaged Systems(SHAMAN 2002), June
2002.

[9] T.J. Parr and R.W. Quong. ANTLR: A
Predicated LL(k) Parser Generator. Soft-
ware, Practice and Experience, 25(7):789–
810, 1995.

[10] R. Srinivasan. Automatic Software De-
sign Recovery and Re-Modularization Us-
ing Source Transformation. Master’s the-
sis, School of Computing, Queen’s Univer-
sity, 1993.

[11] N. Synytskyy, J.R. Cordy, and T.R. Dean.
Robust Multilingual Parsing Using Island
Grammars. In Proc. CASCON ’03: 2003
IBM Centre for Advanced Studies Interna-
tional Conference, pages 266–278, 2003.

[12] M.G.J. van den Brand, J. Heering,
P. Klint, and P.A. Olivier. Compiling Lan-
guage Definitions: the ASF+SDF Com-
piler. ACM Transactions on Program-
ming Languages and Systems, 24(4):334–
368, 2002.

[13] E. Visser. Program Transformation with
Stratego/XT: Rules, Strategies, Tools,
and Systems in StrategoXT-0.9. In
Domain-Specific Program Generation, vol-
ume 3016 of Lecture Notes in Computer
Science. Spinger-Verlag, 2004.

15

