
Identifying and locating interference issues in Content

Management Systems

Laleh Eshkevari

⇤

Giuliano Antoniol

Department of Génie

Informatique et Génie Logiciel

Polytechnique Montral —

Canada

laleh.eshkevari@polymtl.ca

antoniol@ieee.org

James R. Cordy

School of Computing

Queen’s University, Canada

cordy@cs.queensu.ca

Massimiliano di Penta

Department of Engineering

University of Sannio — Italy

dipenta@unisannio.it

ABSTRACT
The large success of Content management Systems (CMS)
such as WordPress is largely due to the rich ecosystem of
themes and plugins developed around the CMS that allows
users to easily build and customize complex Web appli-
cations featuring photo galleries, contact forms, and blog
pages. However, the design of the CMS, the plugin-based
architecture, and the implicit characteristics of the program-
ming language used to develop them (often PHP), can cause
interference or unwanted side e↵ects between the resources
declared and used by di↵erent plugins. This paper describes
the problem of interference between plugins in CMS, specif-
ically those developed using PHP, and outlines an approach
combining static and dynamic analysis to detect and locate
such interference. Results of a case study conducted over
10 WordPress plugins shows that the analysis can help to
identify and locate plugin interference, and thus be used to
enhance CMS quality assurance.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Verification

Keywords
Content Management System, PHP, variable interferences,
dynamic typing.

⇤Contact Author

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. INTRODUCTION
Content Management Systems (CMS) such as WordPress,

Joomla, and Drupal are increasingly gaining popularity and
changing the way Web sites are developed and evolved. The
December 2013 issue of W3Techs1 reports that about 35%
of the 1 million most popular Web sites use a CMS to help
authors to manage their contents. The most popular CMS
is WordPress (WP)2 with about 60% of the overall CMS
market share and large customers such as Ebay and the
New York Times. The massive success of CMSs—and of
WordPress in particular—is largely due to their ecosystems
of themes and plugins. Themes and plugins allow users to
customize the platform’s look-and-feel, and to easily develop
Web applications providing complex features, ranging from
access to social networks to e-commerce features and blogs.
As of the end of December 2013, WordPress features 2,177
free themes and 28,546 plugins. Although WP is so pow-
erful, and easy to install and use, often developers have to
face o↵ with problems not easy to be solved.

Motivating scenario. To understand why and where
problems arise when using WP, let us go back to mid/end
2012 and consider a scenario in which a user decides to install
and run a typical WP-based blog Web site which allows vis-
itors to post and comment on pictures and picture galleries.
Let us suppose the user decides to install the WP NextGEN
plugin, release 1.9.3. NextGEN provides an easy-to-configure
environment for managing slide shows and picture galleries.
The installation task is done with a couple of mouse clicks,
and the user may then create her first photo gallery by up-
loading a few images just to test the presentation and choose
a nice page layout. Once done, she may also decide to install
the WP Contact Form 7 feedback plugin and customize a
feedback form. To test the form, the user may post a com-
ment on a picture and then approve the comment. All is now
ready, but before going live, she runs a scenario combining
the two plugins, where she first uploads a set of di↵erent pic-
tures into the already existing photo gallery and then mimics
the behavior of a visitor commenting on pictures using the
form.

Suddenly, she bumps into a strange problem: she cannot

1http://w3techs.com/technologies/history_overview/
content_management/all
2http://wordpress.org

upload images any more. Unknown to her, she is experi-
encing a case of destructive interference between two (or
more) plugins. She remembers that before installing Con-
tact Form 7 she was able to upload pictures. Indeed, if she
removes the Contact Form 7 plugin, magically she is again
able to upload pictures. However, the culprit is not actually
Contact Form 7 – in fact, the problem is due to a wrong
file inclusion order in the NextGEN plugin! Unfortunately,
this problem only appears if the Contact Form 7 plugin is
installed and activated. For this reason, we argue, it was not
immediately discovered by NextGEN developers, who might
easily have attributed the problem to Contact Form 7 or
other plugins with which the problem is manifested. The
bug was discovered and documented by the NextGEN devel-
opers3, but no solution was o↵ered for users who wish to
install both plugins because its origin was unknown.
The general case might be more complex than the simple

example explained above. For N installed and activated plu-
gins, one may have to deal with all the possible plugin con-
figurations (installing/activating, and deactivating/remov-
ing plugins) to discover the source of an interference.
In order to understand and locate the cause of an interfer-

ence problem, one must inspect the plugin code and, possi-
bly, examine execution traces. WP and its plugins are writ-
ten in PHP, mixing the PHP code with HTML, JavaScript
and SQL queries, and the user may not have the knowledge
to debug such complex multi-tier plugin-based Web appli-
cations. Plus, she may not have any way to track down
the interferences between the plugins or, even worse, she
may not have full access to the server where the Web site
is deployed. The only solution available at this stage would
be installing/activating or deactivating/removing plugins by
trial and error, or browsing mailing lists and forums to look
for cases of similar issues and a suitable solution.
This situation motivates the need for appropriate analysis

methods and tools to identify and locate interference prob-
lems in CMS such as WP. Manually checking the code and
understanding the potential intermixed behavior of thou-
sands of plugins is simply not feasible.
Paper contributions. To deal with some of the afore-

mentioned problems, we first present a taxonomy of WP
plugin interferences, and then propose an approach to help
WP developers to identify and locate potential plugin inter-
ferences. The approach is able to automatically identify
and locate several possible causes of interferences, such as
those caused by multiple PHP function definitions or by the
WP mechanism used to activate plugin features. We observe
that some kinds of WP plugin interferences are caused by
the way that WP plugins work, and thus are specific to the
WP architecture. are more general, and thus the problem
studied in this paper is not limited to WP and may apply
to many other PHP-based Web applications.
To test the feasibility and usefulness of the analysis, we

applied our tool chain to two recent WP core framework
releases (3.6 and 3.7), augmented with plugins selected to
be (1) part of the top 10 must-have plugins, and (2) to have
been (possibly) reported to cause interferences. We provide
evidence that our approach can e↵ectively help in detecting
potential sources of interference and in locating them in the
code.
Paper structure. Section 2 begins by defining the in-

3http://wordpress.org/support/topic/
plugin-nextgen-gallery-conflict-with-contact-form-7

MySQL

WordPress

Plugin
Plugin

Plugin

Apache Web
Server

PHP
Module

Client

Web
Browser

Data
Layer

Javascript

Javascript

Javascript

Figure 1: WordPress and LAMP stack.

terference problem in WP, and in PHP Web applications in
general. Section 3 describes our proposed approach to iden-
tify interference problems using a combination of static and
dynamic analysis of PHP code. Section 4 reports an empiri-
cal study aimed at demonstrating the approach’s feasibility
and highlighting the relevance of the interference problem
in WP. After a discussion of related work in Section 6, Sec-
tion 7 concludes the paper and outlines directions for future
work.

2. INTERFERENCE ISSUES
IN WORDPRESS

Figure 1 summarizes the elements of the WP execution
environment in the context of the LAMP stack. The PHP
Apache module (the interpreter) executes PHP files from
inside the Web server. WP uses a relational database in
MySQL as a back-end to store transient information, user
configuration parameters and various plugin information and
parameters. MySQL connections and database operations
are handled by the PHP interpreter and thus through Apache.
WP is organized into a set of directories; each plugin is
stored into its own directory. Several JavaScript compo-
nents are made available by the core framework, and each
plugin can also have its own JavaScript set of libraries.

The WP core framework (release 3.8 – December 2013)
is composed of 483 PHP files, 273 JavaScript files and 112
images.

2.1 WP Interferences
InWP additional functionality provided by plugins is added

by means of hooks, which allow a plugin to ’hook into’ the
WP framework by having plugin functions automatically
called at particular times. There are two kinds of hooks:
filters and actions. Filters, as their name suggests, filter
user content transiting from/to the database and the (Web-
based) user interface. Actions are functions triggered by
specific WP events, such as publishing a page, approving a
post, or deleting a user comment.

In addition to filters and actions, a third way for plug-
ins to hook into WP is the shortcode API. The shortcode
API, available since WP 2.5, is a set of functions for creat-
ing macro code for use in WP PHP pages to dynamically
call functions, and thus add or modify page contents. For

2

instance, the shortcode [wp_sitemap_page] would add the
sitemap into a page, while [slideshow id=1] generates a
slideshow using the first image gallery added to the NextGen
plugin. In a nutshell, the shortcode API enables plugin de-
velopers to create special kinds functions that users can at-
tach to certain pages by adding the corresponding shortcode
into the page text.

We classify interferences based on the mechanism caus-
ing the interference: shortcode, entity name, variable and
database content, and JavaScript. The following subsections
provide a succinct description and examples of documented
interferences of each kind.

2.1.1 Entity Name Interferences
To enforce information hiding, recent PHP releases im-

plement objects and namespaces. However, namespaces are
not used in WP, likely to maintain backward compatibility
with earlier Object-Oriented (OO) PHP releases. In a nut-
shell, PHP has three scope levels: the (global) file-level, the
class-level, and the method/function level. This is to say, a
file-level function is visible only inside the file and all other
files that include the file in which the function is defined.
Classes, unless nested inside other classes, are visible at the
global (file) scope level.

PHP is a dynamically interpreted language, thus the inter-
preter has no way to statically verify if at run-time a file will
include a function already defined or a class already encoun-
tered. Redefinition of functions, classes or variables, defined
at the global scope level, may create an interference, i.e., a
conflict between an entity already encountered, and a new
one of the same name just encountered. WP coding stan-
dards4 suggest that global variables, classes and functions
should be named in a way to avoid conflicts, for example
by using a unique prefix. Unfortunately, this policy is not
enforced, especially in third-party plugins. In other words,
a plugin developer or the WP Quality Assurance (QA) team
may not be aware of other plugin entity names that create
a conflict with a given fragment of code. There is no auto-
matic mechanism to warn of or pinpoint any suspicious or
risky naming.

A non-trivial example of potential interference in WP is
the presence of two classes implementing the File Transfer
Protocol (FTP) and derived from the same base class in the
WP core files. One must be very careful to make sure which
version is actually instantiated and used. Another example
is the class Services JSON, which is defined in both the WP
core and the w3-total-cache plugin.

2.1.2 Hook Interferences
Hook interference is similar to entity name interference.

For filters and actions the interferences will emerge if name
of the function to be executed following the event specified
by hook name already exists in WP core or other plugins.

The WP coding standards suggest that shortcode names
should be unique, once again such uniqueness is not enforced
in any way. Therefore, two di↵erent plugins may define the
same short-code which may lead to an unexpected behavior.

One well known example of shortcode interference is a
conflict between one of the top downloaded WP plugins,
Jetpack, and the Contact Form 7 plugin. Among other
things, Jetpack simplifies form creation, including contact

4hhttp://make.wordpress.org/core/handbook/
coding-standards/

forms. For this reason, early releases of the two plugins used
the same shortcode [contact-form]. A more recent release
of Contact Form 7 avoids the conflict, by using a di↵er-
ent shortcode i.e., [contact-form-7]. Nevertheless, the old
shortcode [contact-form] is still available to ensure back-
ward compatibility, and can still cause a problem.

2.1.3 Variable and Database Interferences
Interference can also occur due to variable definition/re-

definition of the same name at the global level, or by defining/re-
defining constants. This is a subtle and di�cult to track kind
of interference, because it occurs on the server side, where it
is very di�cult to debug multi-tier applications. As Figure
1 shows, PHP runs as an Apache module, and the PHP log-
ging levels or Apache error messages are usually not enough
to track down the culprit. Of course, it is always possible to
instrument and explicitly log variable changes at the server
side, but the large quantity of logged information may not
be easy to deal with.

WP also stores permanent data into database tables, and
the WP coding guidelines advise plugin developers not to
create plugin specific tables, if possible, but rather to use
a provided API to store key–value pairs in a way similar
to a hash table. The API allows creation of an association
between a string, the key, and a stored value (or possibly
a serialized array of values). In other words, the developer
has to define her own key strings to identify the informa-
tion to be saved into the database and uses the WP API
to store/retrieve the information associated with the string.
Of course, the string must be unique, otherwise once again
a possible conflict with other plugins may occur 5.

2.1.4 Client Side (JavaScript) Interferences
WP and thousands of its plugins rely on JavaScript to

implement client-side data validation, Ajax communication,
traverse the HTML DOM, or implement various other kinds
of client-side functionality. Unfortunately, it may happen
that two di↵erent plugins, activated in the same client page,
load incompatible JavaScript code or di↵erent, incompati-
ble, releases of the same JavaScript library.

An example of this kind of interference can by caused by
di↵erent versions of the JavaScript library JQuery 6. JQuery
simplifies HTML document traversal, manipulation, event
handling, and animation. The WP core framework already
includes a JQuery release; however, several plugins include
their own, di↵erent, JQuery release.

Let’s consider the following scenario. To develop a Web
site, the user uses the JQuery Superfish menu plugin. Also,
let us assume that the WP installation also includes the Con-
tact Form 7 plugin. Unfortunately, the version of JQuery
used by Contact Form 7 may interfere with other versions of
JQuery used by WP or by other plugins. Such interference
often occurs while WP is loading the page header. Depend-
ing on the release of the Contact Form 7 plugin, the loaded
JQuery version may or may not cause conflicts 7.

The easiest solution is to make sure the required JavaScript
release is loaded, and possibly to de-register Contact Form
7 JavaScript. However, this does not guarantee the Contact

5http://wordpress.org/support/topic/
fields-not-saved-in-database
6https://jquery.org/
7http://stackoverflow.com/questions/4964068/
javascript-conflict-contact-form-7-superfish-js

3

Form 7 plugin will work properly.

2.2 Errors, Faults, and Failures in the Con-
text of Interferences

Plugin destructive interferences occur if and only if in-
terfering plugins are installed and activated, and a certain
sequence of events occurs. Strictly speaking, one should
make a distinction between the developer error (e.g., a
poor shortcode naming choice), the actual interference fail-
ure (e.g., a Web page not created), and the fault (e.g., the
chosen conflicting shortcode). If the fault is not executed the
failure is not observed. Our goal is to detect and pin down
potential interferences, and thus to detect potential faults.
We believe it is safer to warn the user of a potential conflict
and let the user decide if the code should be modified or not.

Let us return to the example interference described in the
introduction of this paper. The order in which NextGEN
loads configuration parameters – i.e., the order of its in-
clude files – first causes the loading of a regular user profile,
then it unsets this user profile and loads an administrator
profile. Here the developer error resulted in a fault which
is an incorrect order of file inclusion. This results in a mix-
ture of normal user and administrator privileges. For exam-
ple, it defines the constant WP_ADMIN as true (line 14 of the
erroneously-loaded wp-admin/admin.php file). The failure is
experienced if Contact Form 7 is installed and activated. To
detect the fault we need do nothing specific about the par-
ticular Contact Form 7 plugin – it su�ces to simply track
the file order of inclusions. To fix this problem, the order of
includes must be changed 8.

One may argue that the actual interference is due to a vari-
able being inconsistently reassigned (e.g., WP_ADMIN) which
causes the actual failure. However, in the specific case, the
real fault is incorrect include order which, incidentally, is
easier to track and detect.

3. PROPOSED APPROACH AND
TOOL SUPPORT

The approach for identifying interferences in CMS devel-
oped with PHP is based primarily on a static analysis, com-
plemented by dynamic analysis to track the run-time reso-
lution of includes. It is important to note that the proposed
approach can also be applied using the static analysis only.
This would be especially advantageous to perform a cheap
and fast analysis without the need for deploying and execut-
ing the CMS being analyzed.

To analyze PHP source code, we rely on two widely-used
infrastructures, the PHP parser from the Eclipse PHP De-
velopment Environment (PDT)9, and TXL[4]. Specifically,
we use the Eclipse PDT parser to assist in the static analysis,
and the TXL source transformation engine to add the code
instrumentation needed to collect information at run-time.

3.1 Analyzing PHP data flow and includes
The goal of our analysis is to extract information needed

to perform the interference analysis detailed in Section 3.2.
First, we use the PDT parser to create an Abstract Syn-

tax Tree (AST) for each PHP file in the WP directory tree.
We build a symbol table to collect information about PHP

8http://wordpress.org/support/topic/
plugin-nextgen-gallery-conflict-with-contact-form-7
9http://projects.eclipse.org/projects/tools.pdt

Figure 2: Example of include in PHP.

entities namely files, classes/interfaces, methods/functions,
method/function parameters, fields, constants, and local vari-
ables.

3.1.1 The PHP Include Mechanism and Variable Dec-
laration

Before performing deeper analyses such as data flow anal-
ysis, we need to locate and resolve includes. Di↵erently from
C/C++, where the name of the file to include must be con-
tained in a string literal (possibly built at compile-time via
pre-processor)—i.e., #include filename—in PHP the in-
clusion is done with the include statement that accepts as
a parameter an expression. There is no constraint on the
include expression which can contain variables and call to
functions as well as string operators. In other words, often,
the file name path is dynamically computed and built at run-
time. To avoid circular inclusions, PHP provides di↵erent in-
clude statements, namely include, include_once, require
and require_once. include and require always include
the file passed as parameter. The di↵erence is that require
produces a compiler error upon failure. include_once and
require_once work similarly to include and require, how-
ever do not include a file if it has been included already,
i.e., avoiding a multiple inclusion.

Consider the example in Figure 2. The PHP define state-
ment takes two arguments: a string identifying the constant
to be defined, and an expression to be evaluated and as-
signed to the constant (the right hand side). In Figure 2
the constant CWD is defined in f1 by the statement define(
’CWD’, ’/’) and ’/’ is its value. In the same example
we see file f1 include file f2 through the include statement
include (CWD."f2"."php") where the path to the file to be
included is the result of the concatenation of three strings
CWD, "f2", and "php", where the constant CWD is already
defined in previous line. Moreover, if included files are
not resolved, one would think that variable pos is first en-
countered and thus defined in file f1, while actually it is
declared/defined in file f2.

3.1.2 A Fixed-Point PHP Include and Data Flow
Analysis Approach

Algorithm 1 presents a high-level view of the computa-
tion performed to resolve includes and constants. First, all
files in the system are traversed and entities of interest are
added to the symbol table. We identify the WP API calls
used to instantiate hooks and short-codes by collecting the
add_action, add_filter, and add_shortcode function calls
and save the needed information in a separate data structure
which will be used for the analysis of hook interferences. For
each entity we extract its line number, name, signature (if

4

exists), type (if exists), and scope. For constant entities we
collect their values (i.e., right end side) if not dynamically
built at run-time. If the value is not a scalar but it is a
concatenation of strings and/or return value of functions,
we collect the whole statements and mark the entity as non
resolved. In the same way we process the include state-
ments (include, include_once, require, require_once) as
well. We store in the symbol table structure also the state-
ment parse tree, later used by the symbolic execution. To
statically resolve constant and include statements, we im-
plemented a simplified symbolic execution. The simplified
symbolic execution implements the behavior of two PHP
magic variable and two functions as well as the string con-
catenation operator (See Table 1). We rely on API function
provided through FileNetworkUtility in PDT to handle
the access to the parent (current) directory (e.g., ”../” and
”./”)

Once files are traversed and the symbol table initially
populated, the fixed-point algorithm attempts to resolve as
many include file paths as possible. Before this step, we ap-
ply a simple heuristic using the function
ScanAndAssignNameIfUnique. It may happen that the
include path ends with a file name (e.g., ’ABSPATH’ . ngg-
config.php) and it may happen that this file name is ac-
tually unique and not the su�x of any other file. In such
cases, there is no need to perform complicated calculation
and the include relation is resolved based on the file name
identity.

Next, as shown in Algorithm 1 if the current entity is an
include or a constant, and (so far) it has not been resolved
i.e., the value is not known, the function SymbExecAn-
dUpdate attempts to compute the current define right end
side or include parameter value. If SymbExecAndUpdate suc-
ceeds, it returns true so that the collected new information
can percolate and improve collected information, as well as
updating the values of other entities depending to the cur-
rent entity. If SymbExecAndUpdate fails, the entity will be
marked as delayed, and its value may be resolved in next
passes. In fact, if a new include file path (or constant) is
resolved this may impact on variable definition as well as on
other constants or includes.

Algorithm 1 terminates when it is not able to further up-
date information (i.e., it has reached the fixed-point). In
general, it may happen that, at this stage, some constants
or includes are still not resolved, because the path of some
files is still unknown. This typically happens for two rea-
sons: (i) the right-hand side of the string constant definition
or the include parameter contains one or more PHP vari-
ables; or (ii) the string value is obtained from a user defined
function.

The remaining unknown includes make the analysis im-
precise. In general, the way the analysis is performed avoids

Table 1: Implemented functions, operators and
Magic Variables
Function/
Operator/ Description
Variable
dirname Extract directory name
basename Name with any leading directory components removed
. Concatenate two strings
FILE Contains the current file absolute path
DIR Equivalent to dirname(FILE)

Algorithm 1 Include resolution and symbol table construc-
tion.

update=false
for file in System do

entities = extractEntities()
addToSymbolTable(entities)

end for

for ent in SymbolTable do

if ent == Const|ent == Include&¬ent.resolved then

ScanAndAssignNameIfUnique(ent)
end if

end for

repeat

for ent in SymbolTable do

if ent == Const|ent == Include&¬ent.resolved then

update| = SymbExecAndUpdate(ent.stmnt, SymbolTable)
end if

end for

until update

the presence of false positives, but cannot exclude false neg-
atives. Typically—as it also happened in our study (see Sec-
tion 4)—most includes are statically resolved even before
the fixed-point algorithm, and thus in principle, at least for
WP, a good quality analysis can be done without the need for
dynamic analysis. However, if a complete analysis is needed,
the only possible solution is to resort on dynamic analysis to
track the remaining unresolved relations. Clearly, dynamic
analysis require to deploy and execute the application, and
above all to find scenarios that exercise the unresolved in-
cludes.

Once the includes have been resolved, we build a directed
graph for the whole WP application, including plugins. Nodes
(fi) of the graph correspond to files, and an edge from fi to
fj indicates that fi includes fj . if file f1 includes files f2.
Edges are labeled with the specific type of include (i.e., in-
clude, include_once, require, require_once), with the
line number where the include statement occurs, and the
scope (file, class, function/method) to help distinguishing
cases where the include is inside a function/method declara-
tion, class declaration, or file. This include graph is used by
the steps defined below and to check certain kind of includes
faults and include oddities (e.g., the same file included in
multiple locations in the same file).

3.1.3 Extracting variable declarations
The include graph is used to perform another pass over the

AST of all files to extract the first definition of a variable in a
file as its declaration. The include graph built in the fist pass
makes it possible to verify if variable under analysis belongs
to the current file or another files being included. At this
point, we just go one level up, i.e., for variable $pos that is
defined in f1 we check if the file the is included immediately
before the definition of the variable f2 has a definition for
variable $pos, or files that include f1 have a definition for
$pos. If no other file has a definition for $pos, then we add
$pos to the symbol table related to the scope of file f1. In
the example of Figure 2, the variable $pos is not added to
the symbol table under the scope of filef1 as it belongs to
file f2.

It is important to point out that the extraction of variable
declarations is not 100% precise, as our analysis is both con-
text and flow insensitive, i.e., the order of statements and
the call sites of methods are not taken into consideration.
In other words, our analysis could interpret that both files
f1 and f2 declare variable $v, while in reality the variable

5

belongs only to one of those files.

3.1.4 Extracting def-use pairs
In the final pass over the AST, we collect the definition

and use statements. For each entity in such statements, we
first look up the entity in the symbol table of the current file.
If such an entry (i.e., a declaration) is found, we keep track
of the use/definition statement in a proper data structure.
Otherwise, using the include graph built in the previous step
we look into the symbol table for files that have include
relation with the current file and find an entity declaration
that corresponds to the entity being defined or use in the
statement under analysis, and add the def-use statements
to the data structure. Again, because we are both context-
and flow insensitive, definitions and uses are a conservative
super-set approximation of the actual information.

3.2 Detecting Interferences
Based on the information collected using the approach

described in Section 3.1, we detect a subset of the di↵erent
kinds of interferences introduced in Section 2. We are able to
detect conflicting entity names, hooks, and database code,
as well as certain include patterns documented to create po-
tential interference. Some specific kinds of interferences—
namely those related to Javascript—are left for future work,
because they require a much heavier combination of static
and dynamic analysis (e.g., the Javascript code may be auto-
matically generated from the server side). In the following,
we explain how each kind of interference is detected.

3.2.1 Detecting Conflicting Entity Names
To identify conflicting entity names, we rely on the symbol

table. We traverse the symbol table, and collect class and
function names, and compare for identical names.

3.2.2 Detecting Conflicting Hooks
Detecting conflicting hooks and short-codes is less straight-

forward than detecting conflicting entity names. We first
search for theWP API calls used to instantiate hooks, namely
functions add_shortcode, add_action, and add_filter. For
all three functions we evaluate the first parameter (the name
of the hook or short-code). If the first parameter is a con-
stant string, we stop, if it is a variable we check where the
variable is defined and if it is defined by a constant string.
We also search for defined constants used in the hook regis-
tration API. These are collected as possible hook and short-
code names and used to compare with other plugin hooks
and short-codes.

3.2.3 Detecting Conflicting Database Code and Con-
flicting Variables

Similarly to detecting conflicting hooks and short-codes,
we attempt to track strings used in the WP database API
for adding the plugin data to the database. Two functions
are specifically of high interest:

• add_option that is used to add a named option/value
pair to the options database table. The function ac-
cepts four parameters, where the first parameter refers
to the name of the option be and the second parame-
ter is the corresponding value. An attempt to add an
already existing option to the data base will be failed.
The name of the option should be all lowercase string
and words should be separated by underscore.

• add_post_meta that is used to add custom fields to a
post. The function accepts four parameters: the post-
id, the key of the custom field, its value and a boolean
value determining whether or not the key should be
unique.

As for hook interferences, here we check the first parame-
ter of add_option and the second parameter of add_post_meta.
Interference is detected when two or more di↵erent plugins
call these functions with same name or custom field key.

3.2.4 Detecting Risky Include Configurations
WP plugins should respect coding standards as well as cer-

tain include patterns. Given the include graph, it is possible
to check for include oddities and for specific risky include
patterns. Include oddities are cases in which a file including
another file for multiple time. Risky includes are cases in
which files from plugins including files from the WP core as
this may generate unwanted side e↵ects and interferences.

For example, in WP 3.7, admin.php includes the files
admin-footer.php and admin-header.php in all but one
branch of an if statement. This can be easily refactored in a
more easy to read and understand way by pulling out of the
if the two includes. Another example is the file sitemap-
core.php in the latest release of plugin googlesitemap-
generator, where class classsnoopy.php of the core WP
is included. Future changes to functions of the class class-
snoopy.php will directly a↵ect the sitemap-core.php, and
may not be noticed since the PHP interpreter does not stat-
ically verify whether a function invocation has a valid defi-
nition.

4. EMPIRICAL STUDY
The goal of this study is to use the approach described in

Section 3, with the purpose of detecting potential interfer-
ences in WP with a set of installed plugins, with the purpose
of understanding the relevance of interference problem and
assessing the capabilities of the proposed approach to deal
with it.

The context of the study consists of WP itself—in two re-
leases, namely 3.6 and 3.7—along with a set of 10 installed
plugins. We did not consider the most recent versions of WP
(e.g., 3.8) because many plugins were not tested with that re-
lease. For what concerns the selection of plugins, we focused
on 10 popular ones. There is no general consensus on the
top ten must-have plugins; depending from the Web site’s
application domain, user communication goals and project
constraints, di↵erent plugins may better serve the Web site’s
objectives. Indeed, there are several di↵erent lists of the top
ten must-have WP plugins on the Web. Based on the WP
most popular plugins10and other three most popular lists,
namely WeDesignPixel 11, TreeHouse Blog 12 and Selz Blog
13, we have chosen the set of plugins reported in Table 2.
As the table shows, we performed our study on two config-
urations of WP: (i) an old one, consisting of WP 3.6 plus
some old versions of the 10 plugins, and (ii) a more recent

10http://wordpress.org/plugins/browse/popular
11http://wedesignpixel.com/top-must-have-wordpress-
plugins

12http://blog.teamtreehouse.com/best-free-wordpress-
plugins-for-common-website-functionality

13https://selz.com/blog/10-must-wordpress-free-plugins-
starting-online-business-selling-digital-downloads/

6

one, consisting of WP 3.7 plus some newer versions of the
plugins.

4.1 Research Questions
The goal of the study is to address the following research

questions.

• RQ1: How many potential interferences can we detect
using static analysis? The aim of this research ques-
tion is to assess the relevance of the investigated prob-
lem, i.e., to investigate to what extent are the inter-
ferences illustrated in Section 2 common in WP and in
its plugins. Other than investigating how many inter-
ferences can be detected, we also investigate perform a
qualitative analysis on some of the interferences, also
highlighting cases where the interferences have been
documented, e.g., in WP forums.

• RQ2: How e↵ective is the static analysis to detect in-
terferences? As explained in Section 3, our approach
is mostly based on static analysis, however it can be
complemented by dynamic analysis to resolve some in-
cludes that cannot be resolved statically. The goal of
this research question is to investigate on the added
value of dynamic analysis. Our conjecture is that,
should this added value be fairly limited, then devel-
opers could just rely on static analysis. This is because
the latter is cheaper, and does not require to deploy
and execute the system under analysis.

It is important to point out that our empirical evaluation
does not focus on the approach accuracy/precision. Our ap-
proach, by construction, does not produce false positives.
The approach goal is to detect the fault e.g., two di↵erent
functions or classes with the same name, or two hooks of
two di↵erent plugins installing di↵erent handlers with the
same short-code string. As in testing if the fault is not ex-
ecuted the failure is not observed. Thus the fact that, for
example, two functions have the same name not necessar-
ily manifest itself into an interference. In a nutshell, every
time an interference is detected, this, is, indeed, a“potential”
problem: that is, static analysis is able to identify potential
problems in the code. However, as it happens for any static
analyzer—including for example vulnerability detectors—it
may or may not happen that there exist execution scenar-
ios in which the fault is produced and the failure will be
manifested.

Instead, the approach may su↵er of false negatives, i.e., there
may be interferences that the proposed is not able to detect.
Section 4.3 will discuss such limitations in detail, by also
providing some examples of interferences we failed to detect.

4.2 Study Results
WP and plugin source code was analyzed, information

extracted and potential problem identified. This sub section
reports quantitative results on the discovered interferences
aiming at answering the two research questions formulated
above. All potential interferences are available for download
on-line14.

Specifically, in following we quantify potential interfer-
ences found for the categories defined in Section 2 and pro-

14http://ser.soccerlab.polymtl.ca/ser-repos/public/tr-
data/wp-data.tgz

vide discovered examples of such interferences. After that,
we summarize answers to our research questions.

Include-based Interferences:
Include relations are computed as described in Section 3

and modeled as a graph. Graph node represent PHP files,
and edges represent include relations. Edges are labeled
with the line of code at which the include is encountered
and the type of inclusion (i.e., include, include_once, re-
quire, and require_once). Edges are also labeled by the
entity performing the include i.e., a class or method, or a
function. Given the large number of inclusions, manual in-
spection of such graphs is not practical even for a single
plugin. Therefore, although we will show some excerpt of
graphs as examples, such graphs are automatically analyzed
to detect possible interferences. Table 2 reports a summary
of the include relations in both releases of WP and their
corresponding plugins.

To simplify the computations we assume that we know the
values of the constants: ABSPATH (the path where WP is in-
stalled), WPINC (location of include directory), and WP_PLUGIN-
_DIR (location of plugin directory). As Table 2 shows, most
of WP includes are resolved before the fixed point step; this
points to a disciplined and not overly complex include file
regimen in the core framework. However, for plugins the sit-
uation changes. Consider the plugin W3 total cache. This
plugin has almost the same number of include relations as
WP itself, but almost half of the included file relations are
resolved only by the fixed point step. On summary, only
8.2% (number of unknown after fix point over the total
number of include relations) cannot be identified statically.

When looking at release 3.7 of WP and its related plugins,
the situation does not change dramatically, and overall only
about 9% of the include relations are not statically com-
puted.

ngg-config.php

wp-load.php

 RO 33

nggshow.php

 IT - RO 4

admin/upload.php

 RO 9

wp-admin/admin.php

 RO 23

admin/functions.php

 IO 42

Figure 3: NextGen Dynamic Include Graph Frag-
ment.

When a plugin is started, WP is already loaded and run-
ning thus a plugin should not include the top level WP
startup file. To be on the safe side, we encoded a simple
rule that says: “a plugin should never load WP load file
wp-load.php”.

In addition, one may wish that the include structure is
simple with easy to follow include relation. We decided
to flag as odd include statements, statements including the

7

Table 2: Analyzed releases of WP and its plugins, with details about include relations.
Old Release New Release

Rel. Includes Unknown Unknown Edges Nodes Rel. Includes Unknown Unknown Edges Nodes
Before After Before After

Fix Point Fix Point Fix Point Fix Point
WordPress 3.6 629 37 35 627 366 3.7 647 37 35 645 368
NextGen Gallery 1.9.3 114 26 12 114 71 2.0.40 144 37 22 144 149
Google XML Sitemap 3.2.7 5 2 2 5 7 3.3.1 5 2 2 5 7
Contact Form 7 3.2 16 15 4 16 19 3.6 19 18 5 19 20
Akismet 2.5.6 3 0 0 3 4 2.5.9 3 0 0 3 4
SEO by YOAST 1.1.7 22 18 2 22 22 1.4.22 42 35 2 42 40
WP Sitemap Page 1.0.12 1 1 1 1 2 1.0.12 1 1 1 1 2
Google XML Sitemaps 3.2.7.1 6 2 2 6 8 3.3.1 6 2 2 6 8
for qTranslate
YARPP 3.5 17 16 5 17 17 4.1.1 26 23 4 26 25
Jetpack 2.7 95 37 15 95 108 2.3.5 126 63 20 126 143
W3 Total Cache 0.9.2.4 592 335 45 593 332 0.9.3 436 168 33 436 299
Total 1,500 489 123 1,499 956 1,455 386 126 1,453 1,065

same file in di↵erent branches of an if, or include potentially
leading to future unwanted side e↵ect if the include file will
be modified.

We found 35 and 50 cases of possible risks in WP 3.6 and
WP 3.7 respectively, and 290 and 247 cases of oddities in
WP 3.6 and 3.7 respectively.

In following we describe one such instance of risky file
inclusion in plugin nextgen-gallery. We were aware of this
conflict and thus it can be considered a sanity check.

When the nextgen-gallery plugin is started it requires
the file ngg-config.php, which wrongly includes the WP file
wp-load.php. As shown in Figure 3, wp-load.php causes
the loading of the admin bootstrap wp-admin/admin.php
in administrator mode. However, the latter was previously
loaded in non-admin mode. To fix the problem one has
simply to comment out the include of wp-load.php and add
the include of wp-admin/admin.php, thus clearly separating
administrator mode from non administrator mode.
The simple rule “a plugin should never load wp-load.php”

correctly allowed us to identify the nextgen-gallery docu-
mented problem. This rule correctly identifies the nextgen-
gallery issue.
A similar issue occurred in W3 total cache (again WP

3.6). The file min/index.php at line 13, requires the load-
ing of wp-load.php in a way similar to nextgen-gallery.
That is to say, there is currently no interference in W3 to-
tal cache, but rather just a risky situation, in which a non-
expert might easily extend the plugin to create a problem
similar to the one occurred inNextGEN.

Table 3: Name interferences in WP 3.6 and top 10
plugins.

Entity Type same di↵erent plugins and core
plugins plugins cores

Class/interface 30 28 6 4
Functions 8 0 36 64
Constant 7 18 18 47

Table 4: Name interferences in WP 3.7 and top 10
plugins.

Entity Type same di↵erent plugins and core
plugins plugins cores

Class/interface 28 28 0 4
Functions 14 0 34 64
Constant 16 18 4 49

Table 5: Hook interferences in WP 3.6 and 3.7.
Program actions filters short-code
WP 3.6 33 44 5
WP 3.7 38 42 2

Entity Name Interferences:
Table 3 summarizes the name interferences occurring in

WP 3.6 and in the top 10 plugins with releases shown in the
second column of Table2. Table 4 shows the name interfer-
ence in WP 3.7 and the top ten plugins with releases shown
in the second column of Table2. For example, we found two
class definitions soap_fault in the old and new releases of
plugin w3totalcache. Both classes are kept because of back-
ward compatibility and they both do not have class body.
These classes belongs to an inheritance hierarchy that is
also duplicated. Strangely enough the implementation of
the root classes (nusoap_base) of these two hierarchies is
essentially identical.

An interesting example is the duplicate definition of method
wp_cache_add_global_groups with same body implementa-
tion of WP core and plugin w3totalcache in the old and new
releases. Another example is a name interference between a
method safecss_filter_attr in WP core and jetpack plu-
gin, where the implementation of methods is not the same.

Hook Interference: Table 5 reports all the interferences
occurring in WP 3.6 andWP 3.7. For example, method mod-
ule_toggle of class Jetpack_Post_By_Email will be called
in plugin jetpack when both actions jetpack_activate-
_module_postbyemail and jetpack_deactivate_module_po-
stbyemail are activated. Although the action names suggest
opposite semantics, the same method will be called.

Another example is the filter the_title, where three func-
tions esc_html, post_title and esc_html are being called
when the filter is activated. The first and the third filters call
the same function esc_html defined in file formatting.php
in WP core include directory while for the second filter, func-
tion post_title defined in class customcss.php of plugin
jetpack is activated.

Database Interferences: In total, we found 35 and 38
calls to the WP 3.6 and 3.7 API functions for adding plu-
gin data to the database. We only found two cases of in-
terferences between plugin google-site-map and google-
xml-sitemaps-v3-for-qtranslate in both new and old re-
lease. Both plugin use the WP API function add_option to
save the page through sm_cpages key to the option table in

8

Table 6: Unknown includes resolved in WP 3.6 and
its plugins by means of some dynamic analysis.

Scenario Discovered %
Unknown

1 17 (13%)
2 9 (7.3)%
3 31 (25%)
4 13 (10%)
5 12 (9.7%)
Overall 33 (26%)

database. As these two plugins are almost the same, it is
not surprising to find such interference.

Summary:
In summary, we can answer to our research questions as

follows:

• RQ1: Using static analysis we can find potential cases
of interferences in WP. However, only the developers
could confirm whether or not such interferences are
indeed real threats.

• RQ2: Static analysis only fails to detect 9% of the in-
clude relations between the files. However, this in turn
could a↵ect the completeness of hook and database in-
terferences.

4.3 Discussion: Approach Limitations and Doc-
umented Interferences

The resolution of file inclusion is one key component of
our analysis. If includes are not correctly resolved, then
hook and database analysis will be directly a↵ected.

Although, as explained, we used static analysis to resolve
includes, we have validated it by means of dynamic analysis.
Clearly, a thorough dynamic analysis would have required to
exercise all possible paths of the Web application that alter
the values of include file names. In our analysis, we focus on
five execution scenario, to see how we could have discovered
some includes not resolved statically.

By comparing the log of dynamic analysis and the include
relations that are extracted statically we identify s subset
of unknown relations. Table 6 indicates the number of un-
known includes that were discovered by these five scenarios
in WP 3.6 and its corresponding plugins.The second column
of the table shows the number of unknown files that are re-
solved dynamically. Overall, by executing these scenarios
26% of all unknown include relation were identified.

Table 7 summarizes all cases in which the static analy-
sis analysis fails. In some cases the include could not re-
solved because the string passed as a parameter to the in-
clude function was produced as output of a function call,
and the simplified symbolic execution could not resolve that.
In other cases, the file name could not be produced because
this would have required a symbolic execution able to sup-
port an context- and flow-sensitive data flow analysis. In
summary, very likely a more sophisticated symbolic executor
could have further improved the completeness of the include
resolution. However, since the unknown includes represent
only about 9% of the total include relations, a lightweight
analysis like the one we proposed is appropriate and able to
scale up to the size and complexity of WP with its plugins.

We found four cases of such interferences discussed online
in WP forums:

Table 7: Where static analysis fails.
Program Path contains

variables function calls
WP 3.6 73 12
WP 3.7 89 8

• short-code [contact-form]: the interference between
the plugins jetpack and contact-form-715.

• short-code [slideshow]: the interference between the
plugins jetpack and nextgen-gallery16.

• short-code [audio]: the interference between the WP
core and plugin jetpack17.

• risky include: the interference between plugin nextgen-
gallery and contact form 718.

Moreover, we found a discussion on WP from regarding the
interference between WP core 2.9 and plugin Twitter Tools
regarding the duplicate definition of class Services_JSON19.
PluginTwitter Tools is not among the 10 top plugins we
analyzed, but we found the same duplicate of class defi-
nition between WP core 3.6 and old release of plugin w3-
total-catch. It is interesting to note that such duplicate of
class Services_JSON does not exist in WP 3.7 and the new
release of plugin w3-total-catch. WP documentation of
short-code discourages developers in using hyphens (dashes)
in the names of short-code, but never enforce such policy.
In total, we found nine cases of short-code names with hy-
phens in both WP and plugins, one such short-code is the
problematic [contact-form] discussed earlier.

5. THREATS TO VALIDITY
This section discusses the threats to validity that can af-

fect the results of our study. Given the exploratory nature of
the study, we mainly have threats to construct and external
validity.

Construct validity threats concern the relationship between
theory and observation. As we have explained in Section 4.3,
the only imprecision that could have occurred in our analy-
ses is related to incorrect identification of include relations.
However, to check the validity of the includes obtained by
means of static analysis, we have performed a dynamic anal-
ysis, where include file names were generated while executing
certain scenarios. Such analysis confirmed the correctness of
the identified includes.However, since not all includes were
resolved by static analysis, this could have limited the com-
pleteness of the identification of other kinds of interferences.
For false negatives, as said a thorough analysis is not possi-
ble because it requires a deep knowledge of WP and of their

15http://contactform7.com/jetpack-overrides-contact-
forms/

16http://wordpress.org/support/topic/plugin-nextgen-
gallery-shortcode-slideshow-conflicts-with-jetpack-by-
wordpresscom-plugin

17http://wordpress.org/support/topic/plugin-jetpack-by-
wordpresscom-audio-shortcode-is-not-falling-back-to-flash-
in-ie9-↵

18http://wordpress.org/support/topic/plugin-nextgen-
gallery-conflict-with-contact-form-7

19http://wordpress.org/support/topic/plugin-twitter-
blackbird-pie-cannot-redeclare-class-services json-on-line-
116

9

plugins. However, at least we found confirmation four cases
of potential interferences being documented on WP forums.
In future we plan to conduct a survey involving WP and
plugin developers to verify the severity of the interferences
we found in these programs.

External validity threats concern the generalizability of
our results. The study is limited to two releases of WP, and
to a subset of its plugins. Although we expect that similar
problems can occur with other plugins and, possibly, with
other PHP frameworks besides WP, further, larger studies
need to be conducted to verify such a conjecture.

6. RELATED WORK
This section describes related work concerning the anal-

ysis of Web applications and, specifically, of PHP applica-
tions.

Reverse engineering of WAs requires static and dynamic
analysis and several works have contributed to the advance-
ment of the fiend since early 2000. The first significant con-
tribution was given by Ricca and Tonella, who developed
the ReWeb tool to perform analyses on web sites [12, 13]. In
particular, Ricca and Tonella introduced a graphical repre-
sentation of the web site to extend to WAs traditional static
flow analyses such as reachability, dominance, and data flow
analysis. ReWeb performs the mentioned analyses plus it de-
tects navigational patterns. Ricca and Tonella also proposed
to enhance static analysis by using dynamic information [14].

Di Lucca et al. [5, 6, 7] proposed an approach and a
tool to extract Conallen’s UML documentation, use cases
and business object from Web applications. Their approach
uses static analysis, however they pointed out that diagrams
can be refined using dynamic information.

Hassan and Holt [8] proposed an approach to automat-
ically recover the architecture of Web applications. Their
approach is able to recover the interaction between vari-
ous components of a Web application—including its presen-
tation, business logic, and database—by using specialized
connector extractors.

Antoniol et al. proposed WANDA [3] an approach and a
tool that instruments Web applications and combines static
and dynamic information to recover the as-is architecture
and, in general, the UML documentation of the applica-
tion itself, including static (class, object) and dynamic (se-
quence) diagrams.

We share with the aforementioned contributions the idea
of using static analysis—and when needed also dynamic anal-
ysis and dynamic analysis—to analyze Web applications.
However, rather than being interested to recover the archi-
tecture of a Web application, we have a specific goal, i.e., to
detect certain types of interferences.

In recent years, work has been done to develop analyzers
specialized for PHP applications. Nguyen et al. [9] devel-
oped a tool, WebDyn, for dynamic refactoring of PHP Web
applications. They manually analyzed 2,664 revisions of four
open-source PHP-based Web applications, and found that
there exists an special form of refactoring that is specific
to dynamic Web applications. Next, they categorized these
refactorings (which they called output-oriented refactoring
operations) in five groups: 1) dynamicalization (e.g., replac-
ing inline HTML/Javascript code with a PHP fragment or
function), 2) re-structuring server and client code, 3) renam-
ing embedded HTML/Javascript elements, 4) standardizing
embedded HTML code, and 5) refactoring for separation

of concerns. WebDyn accurately performed output-oriented
refactoring in all four real word Web application they stud-
ied.

Nguyen et al. [11] proposed an automatic approach, DRC,
to identify dangling reference errors in PHP programs using
static analysis of source code. DRC applies symbolic execu-
tion of PHP programs to identify variable declarations and
references. For each detected declaration or reference, DRC
associates it with the current path constraint of the symbolic
execution. To identify the declaration and references of enti-
ties embedded in HTML or SQL script within the PHP code,
DRC uses the tree-based representation, called D-model [10].
Next, for all variable references, DRC identifies a declara-
tion that matches the reference. While in principle a thor-
ough symbolic execution as the one proposed by Nguyen et
al. could also be applied in our case, we have opted for a
lightweight approach where a (simplified) symbolic execu-
tion is only used for the purpose of resolving include. Albeit
lightweight, our analysis was able to cover over 90% of the
include relations.

Alalfi et al. [1] also proposed an approach based on dy-
namic information to analyze Web applications, and they
suggested the use of coverage metrics [2] to collect accurate
information. They applied this approach for the purpose of
security analysis. Rather than using dynamic analysis, our
approach applies a lightweight approximated static analy-
sis, complemented, if needed, by dynamic analysis having
the sole purpose of analyzing include relations not identified
by the static analysis.

7. CONCLUSION
Content Management Systems (CMS) are increasingly used

to ease the development of Web sites. WordPress (WP) is
the most popular CMS, with about 60% of the CMS market
share and millions of Web sites relying on its functionality
and its rich plugin ecosystem. This paper presented a tax-
onomy of potential plugin interferences in WP, and an ap-
proach to support developers in predicting, identifying and
locating potential interferences before they become a real
problem. To demonstrate the feasibility of our approach,
we applied it two WP releases extended with 10 among the
most commonly installed WP plugins.

The proposed approach allowed us to detect both docu-
mented interferences and other possible sources of potential
interference. Noticeably, in most cases static analysis was
just su�cient. This means that in most cases the proposed
approach can be applied without the need for deploying and
executing the Web application.

Future work will be devoted to improving the static analy-
sis as well as other kinds of interferences, such as JavaScript
interferences. Finally, we would like to extend the analysis
to a large number of plugins and to other CMS and PHP
Web applications besides WP, and discuss our findings with
WP developers.

8. REFERENCES
[1] M. H. Alalfi, J. R. Cordy, and T. R. Dean. Wafa:

Fine-grained dynamic analysis of web applications. In
WSE, pages 141–150, 2009.

[2] M. H. Alalfi, J. R. Cordy, and T. R. Dean.
Automating coverage metrics for dynamic web
applications. In CSMR, pages 51–60, 2010.

10

[3] G. Antoniol, M. Di Penta, and M. Zazzara.
Understanding web applications through dynamic
analysis. In the 12th IEEE International Workshop on
Program Comprehension, pages 120–129, Bari, ITALY,
June 24-26 2004. IEEE CS Press.

[4] J. R. Cordy. The TXL source transformation
language. Sci. Comput. Program., 61(3):190–210, 2006.

[5] G. Di Lucca, A. Fasolino, F. Pace, P. Tramontana,
and U. De Carlini. WARE: A tool for the reverse
engineering of web applications. In Proceedings of the
European Conference on Software Maintenance and
Reengineering, pages 241–250, Budapest, Hungary,
Mar 2002.

[6] G. Di Lucca, A. Fasolino, P. Tramontana, and
U. De Carlini. Abstracting business level UML
diagrams from web applications. pages 12–19,
Amsterdam, The Netherlands, Oct 2003.

[7] G. Di Lucca, A. Fasolino, P. Tramontana, and
U. De Carlini. Recovering a business object model
from web applications. pages 348–353, Dallas, TX,
USA, Nov 2003.

[8] A. E. Hassan and R. C. Holt. Architecture recovery of
web applications. In Proceedings of the 22rd
International Conference on Software Engineering,

ICSE 2002, 19-25 May 2002, Orlando, Florida, USA,
pages 349–359. ACM, 2002.

[9] H. A. Nguyen, H. V. Nguyen, T. T. Nguyen, and
T. N. Nguyen. Output-oriented refactoring in
php-based dynamic web applications. In ICSM, pages
150–159, 2013.

[10] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, and
T. N. Nguyen. Auto-locating and fix-propagating for
html validation errors to php server-side code. In ASE,
pages 13–22, 2011.

[11] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, and
T. N. Nguyen. Drc: a detection tool for dangling
references in php-based web applications. In ICSE,
pages 1299–1302, 2013.

[12] F. Ricca and P. Tonella. Analysis and testing of web
applications. In Proceedings of the International
Conference on Software Engineering, pages 25–34,
Toronto, ON, Canada, May 2001. IEEE CS Press.

[13] F. Ricca and P. Tonella. Understanding and
restructuring web sites with ReWeb. IEEE
Multimedia, 8(2):40–51, Apr-Jun 2001.

[14] P. Tonella and F. Ricca. Dynamic model extraction
and statistical analysis of web applications. pages
43–52, Montréal, QC, Canada, Oct 2002.

11

