
A Service Sharing Approach to Integrating Program Comprehension Tools

Dean Jin James Cordy

School of Computing
Queen’s University, Kingston, Canada

{jin,cordy}@cs.queensu.ca

Keywords: program comprehension, software understand-
ing, tool integration, maintenance, concept support, service
sharing, domain ontology

1. Introduction

Software maintenance is the most time consuming and
costly phase of the software development lifecycle. For ev-
ery dollar spent on creating a new software system, nine
dollars is spent on maintaining it throughout its useful life.
By the late 1980s maintenance spending accounted for an
estimated US$30 billion worldwide. Any activity that even
minimally reduces maintenance efforts would yield signifi-
cant cost savings within the software industry [3].

Tool support for maintainers has focused largely on pro-
viding assistance in activities related to program compre-
hension. The goal of these tools is to provide a rapid means
for maintainers to understand large scale software systems.
Most program comprehension tools have a specific strength
or specialized application area [10] but are weak in other
areas. No single tool exists that provides all the functional-
ity and flexibility that most software maintainers need. For
this reason, research attention has been focused on getting
program comprehension tools to integrate with each other.

In this paper we present a novel approach to facilitat-
ing integration among tools used by maintainers to assist
in program comprehension. We start by showing that pro-
gram comprehension tools have many similar characteris-
tics. Taking full advantage of this fact, we outline how spe-
cially designed adapters and a domain ontology can be used
together to allow these tools to integrate transparently with
each other.

2. Program Comprehension Tools

Program comprehension tools provide a means for main-
tainers to understand a software system from a functional
and behavioural perspective [11]. Functional comprehen-
sion provides insight into what the system does. Be-
havioural comprehension highlights how a system works.

These tools support a variety of activities carried out by
maintainers including:

• Disintegration. Breaking larger systems into subsys-
tem components.

• Pattern Matching. Identification of instances within
the source code where an identical coding pattern oc-
curs.

• Program Slicing. Isolation of all code that relates to or
in some way impacts the execution of a specific point
in the source code.

• Dependency Analysis. Evaluation of the reliance of
system components on other internal or external com-
ponents.

• Metrics Evaluation. Measurement of the code accord-
ing to accepted standards for various characteristics
such as size, complexity, quality, maintainability, etc.

• Exploration. Support for navigation throughout the
source code.

• System Visualization. Generation of views for examin-
ing the system visually.

In many instances, a tool provides assistance but still re-
quires significant manual intervention on the part of the
user.

A tool service is the functionality provided by a tool that,
when given a set of one or more inputs, generates a cor-
responding output that is relevant for maintainers. In the
case of program comprehension tools the inputs are typi-
cally source code (or facts about the source code) and the
output is typically a report or visualization.

3. Hypothesis

Previous approaches to program comprehension tool in-
tegration have beendata centric, concentrating on the ex-
change of data through rigid standardized formats or spe-

cialized hard-coded tool interfaces. This kind of integra-
tion is prescriptive. In essence, it forces tool developers
to conform to an idiomatic standard or provide a particu-
lar functionality to other tools in order to participate in the
integration process.

The hypothesis of our work is that integration among a
set of program comprehension tools can be accomplished
more effectively using external, tool-independent adapters
that make use of a common vocabulary of concepts shared
among the tools. This kind of integration focuses on shar-
ing the services offered by each tool rather than simply ex-
changing data among them.

The novel integration methodology we outline in this pa-
per is distinctlynon-prescriptive. Instead of forcing tool
conformance, we take advantage of commonalities that ex-
ist among tools. We do this by focusing on the operational
and representational concepts that each tool exhibits. We
demonstrate that working from this conceptual perspective
allows us to fully exploit the similarities that exist between
tools to facilitate integration.

We start by observing how program comprehension tools
are similar in terms of their architectural makeup and oper-
ational characteristics.

4. Tool Architecture

Although many program comprehension tools exist,
most feature the same underlying architecture and function-
ality [3]. In general, program comprehension tools consist
of the following three interrelated components [1, 7, 8, 12]:

1. Fact Extractor. On the front end, program compre-
hension tools typically input source code and extract
facts from it.

2. Repository. The quantity of facts extracted from
source code can be substantial. For this reason, it is
typically organized and physically stored in a struc-
tured format such as a database rather than preserved
in memory.

3. Analyzer/Visualizer. The facts in the repository are
processed and analyzed with the results presented vi-
sually or through reports.

5. Operational Characteristics

Elmasri and Navathe [6] define a database as a collec-
tion of related, recordable facts with implicit meaning. This
collection, along with software that manages and manipu-
lates the collection make up adatabase system. Considering
the architecture of program comprehension tools outlined in
Section 4, it is readily apparent that they are in fact database

systems specially tailored to store, manipulate and analyze
software facts.

From this database systems perspective we can abstract
the operational characteristics of program comprehension
tools into three distinct layers:

1. Transactions. The queries and updates that extract,
process and analyze the software facts stored in the
database.

2. Schema. A definition for the entity types, relations
and constraints that make up the information model
used by the tool to represent software. Similar to
database systems, most program comprehension tools
useEntity-Relationship (ER) [2] models to define their
schemata.

3. Instance. Software facts stored in the database in a
form defined by the schema on which the tool trans-
actions operate. For the purpose of our discussion, we
refer to a program comprehension tool database pop-
ulated with software facts as afactbase. The instance
for a given program comprehension tool is simply the
factbase that the tool populates, manipulates and main-
tains.

6. Service Sharing

The similarities among program comprehension tools in
terms of architecture and operational characteristics pro-
vide a significant advantage from an integration perspective.
Typical integration efforts involve the resolution of broadly
different operational paradigms. Within the restricted do-
main of program comprehension tools, the very difficult
problem of reconciling operational differences is largely
nonexistent. This leaves service sharing as the remaining
integration challenge to be dealt with.

Three issues relate directly to sharing services among
program comprehension tools:concept support, transac-
tion application and representational diversity. We now
discuss each of these issues in more detail.

6.1. Concept Support

The notion ofconcept as it relates to factbases is an im-
portant part of our discussion on service sharing. Maintain-
ers use program comprehension tools to extract knowledge
about software from its representation stored in a factbase.
The knowledge that a given factbase can provide depends
on the concepts that the representation supports. We call
this concept support.

In another paper [9] we provide a detailed discussion of
concept support among program comprehension tools. We
classify concept support in a given factbase as follows:

• Native. The factbase explicitly supports the represen-
tation of the concept. Other than possible differences
in the names used, a complete representation for the
concept exists in the factbase.

• Derived. The factbase supports the representation of
the concept, but it must be derived or inferred from
the facts represented. A query can be constructed that
extracts an equivalent representation from the factbase.

• Undefined. The factbase is fundamentally incapable
of representing the concept. This means that no in-
formation content for the concept is available in the
factbase. Provided the absence of certain facts related
to the concept can be tolerated, a partial representation
may be available.

A program comprehension tool factbase can support any
number of concepts. Nevertheless, it is important to keep in
mind that not all concepts are supported in all factbases. For
integration based on service sharing to work, all factbases
participating in the integration must include some kind of
support for the concepts that a particular service operates
on.

6.2. Transaction Application

A program comprehension tool provides a service to
maintainers by executing one or more transactions on soft-
ware facts stored in their factbase. The actual implemen-
tation of each of these transactions depends completely on
the factbase structure. Since the structure of the factbase is
itself dictated by the schema, the implementation of each
transaction completely depends on the schema as well.

In order to share tool services, we must find a way of ap-
plying transactions (whose implementations are specific to
a particular tool) to factbases from other tools. Two meth-
ods can be considered:

1. Transaction Translation. This is the ‘bring the trans-
action to the data’ method. Each transaction imple-
mentation is translated into a new implementation that
works with the factbase for another tool.

2. Fact Provision. This is the ‘bring the data to the trans-
action’ method. The required facts are extracted from
another factbase, appropriately formatted and provided
as input to an existing transaction implementation.

Deciding which approach to use for transaction applica-
tion is a matter of evaluating the tradeoffs between trans-
action implementation complexity and the work involved in
extracting, formatting and working with existing transaction
implementations.

6.3. Representational Diversity

A real challenge in sharing tool services relates to recon-
ciling the diversities that exist in the representation of soft-
ware knowledge that each tool maintains. These differences
relate to issues ofsyntax andsemantics.

Syntax

Structural differences in the way software facts are ma-
nipulated and stored account for the syntactic divergencies
that exist between tools. In relation to integration, we are
concerned with transforming software facts represented in
one form to a corresponding form acceptable by another
tool. This transformation must beisomorphic. Nothing can
be added to or taken away from the facts. Only the structural
characteristics of the facts can be changed. For the most
part, syntactic differences are easily reconciled through rep-
resentational mapping and translation operations.

Semantics

The most difficult aspect of integration that must be ad-
dressed is how to deal withsemantics or differences in
meaning among the software facts maintained by each of
the program comprehension tools.

No single information model captures all the views of
software supported by all program comprehension tools
currently available [5]. This is because a myriad of se-
mantic differences exist between models for programming
languages [4]. For example, in object-oriented languages
such as Java all entities are organized within a hierarchy of
classes. Instantiation outside the class hierarchy is not pos-
sible. In contrast, modular languages such as COBOL allow
the creation of global external variables and records; enti-
ties which are nonexistent in object-oriented programming
languages.

In addition, many semantic differences stem from the use
of program comprehension tools in various application do-
mains. For example, software that supports financial sys-
tems, user interface systems and scientific computing sys-
tems all have unique characteristics whose meaning is rep-
resented differently, depending on the program comprehen-
sion tool being used.

7. Design Decisions

The goal of service sharing is to facilitate integration
among program comprehension tools in a transparent man-
ner that capitalizes on the similarities between them. To
accomplish this, we make use of adomain ontology to or-
ganize the various services, concepts and syntactic charac-
teristics that each tool offers to the integration.

Figure 1. An architecture for sharing services among two program comprehension tools

To keep our solution as simple as possible we keep the
integration components separate from the tool implementa-
tion and instead adopt a ‘plug-in’ approach to participation.
Our intention is to allow developers complete autonomy in
their tool creation efforts. We believe the best way to pro-
mote integration is to make it as easy as possible to plug
into an existing integration environment rather than try to
build one from scratch.

One way to maximize the effectiveness of the integra-
tion and minimize the effort involved in constructing the
domain ontology is to apply our methodology only to pro-
gram comprehension tools. This allows us to confidently
exploit the the similarities among program comprehension
tools in terms of architecture and operational characteris-
tics that we discussed in Sections 4 and 5. It also allows
us to make a fundamental assumption: Although there may
be vast differences in the way each factbase is structured,
there is likely a significant amount of equivalence among
the concepts supported by tools participating in the inte-
gration. There is likely a limit to the variation in concept
support that tools in the same application domain exhibit.
This means that once the domain ontology is initially built,
it should be easier to add participants to the integration at a
later date.

The design of our integration methodology was driven
by the need to address each of the issues related to service
sharing. For instance, we originally chose to make use of a
domain ontology to keep track of concept support for each
tool participating in the integration. It soon became appar-
ent that the ontology could be used to manage all the knowl-
edge about services, concepts and syntactic characteristics
that are required to facilitate integration. This ontology pro-
vides a common vocabulary for tool adapters that operate
very much like software agents in the way they to carry out

integration tasks.
An assessment of the complexities involved in translat-

ing transactions for the tools we wanted to integrate led to
our decision to use fact provision as opposed to transaction
translation.

Our solution also addresses the issue of syntax in rela-
tion to representational diversity. Integration adapters use
the knowledge of syntax maintained in the domain ontol-
ogy to apply syntactic converters in situations where there
is a structural difference in facts represented by tools in the
integration.

Our integration methodology cannot directly address the
issue of semantics as it relates to representational diversity.
This requires the skill and knowledge of a human being.
Nevertheless, our use of a domain ontology and the sepa-
ration of integration components from tool implementation
details emphasizes efficiency and simplicity. This should
make it easier to construct the domain ontology and main-
tain the integration environment.

8. An Ontological Approach

Figure 1 provides an architectural view of our shared ser-
vice integration methodology. Here we see two participant
tools T1 andT2 involved in an integration. Each tool has
a set of transactions (Q1 and Q2), a schema (S1 and S2)
and a correspondingly structured instance (I1 andI2). Our
implementation involves the creation of two types of com-
ponents:

1. Domain Ontology (O). All the knowledge required to
support service sharing among each of the tools par-
ticipating in the integration is stored here. It is es-
sentially a tabularized, cross referenced compilation of

shared services, concepts and syntactic characteristics
supported by each tool. Only one domain ontology is
required for the implementation.

2. Conceptual Service Adapters (A1, A2). These op-
erate as an integration facilitators for tools participat-
ing in the integration. One adapter is affiliated with
each integration participant. The adapters make exten-
sive use of the domain ontology to get the information
they need to facilitate interoperability among integra-
tion participants. Each adapter performs the following
four main functions:

(a) Shared Service and Concept Support Identifica-
tion. Making use of the knowledge of services
stored in the domain ontology, each adapter iden-
tifies requests for shared services and determines
the concept support each service requires.

(b) Information Extraction. Using knowledge of
concepts stored in the ontology, each adapter ex-
tracts facts related to the concepts required for
the shared service from the factbase.

(c) Syntax Conversion. Making use of the syntactic
knowledge stored in the domain ontology, each
adapter looks after structuring facts so that they
conform to the schema for the tool where the ser-
vice being shared is implemented. They also look
after converting the results returned back from
the shared service.

(d) Shared Service Execution. Each adapter manages
requests from other conceptual service adapters
for the execution of shared services on the tool
they are associated with.

The domain ontology is instrumental in providing the
conceptual service adapters with the knowledge they need
to facilitate interoperability among tools participating in the
integration. For this reason it is important that the greatest
care be taken to ensure that the ontology constructed is as
comprehensive and complete as possible. In another paper
[9] we describe the construction of the domain ontology in
greater detail. The long term benefits of using the ontology
far outweighs the short term pain involved in creating it.

A key attribute of each conceptual service adapter is
transparency. In essence, each adapter tricks their associ-
ated tool into thinking it is performing a service on its own
factbase. In reality, the facts provided are from a factbase
from one of the other participants in the integration. Nei-
ther tool is aware that the adapters are acting as liaisons
between them. Successfully implemented, the conceptual
service adapters provide shared services among all partici-
pants in the integration in a seamless, completely transpar-
ent manner.

9. How It Works

Consider two program comprehension toolsT1 andT2

as shown in Figure 1.T2 offers a shared serviceV which
we would like to apply to the factbase ofT1. The domain
ontologyO has been constructed based on the services, con-
cepts and syntactic characteristics supported byT1 andT2.
The conceptual service adaptersA1 andA2 are now ready
to facilitate the interoperability we need to achieve our goal.

The request for serviceV invoked fromT1 is received
by A1. The adapter uses the domain ontology to identify
V as a shared service offered byT2. It also learns thatV
requires a factbase that supports conceptsc3, c21 andc44.
A1 accessesO and verifies thatT1 supports these required
concepts. It then extracts the facts fromI1 that correspond
to conceptsc3, c21 andc44 and syntactically converts them
into a form compliant withS2 using the syntax information
provided byO.

A1 then sends a request toA2 asking it to execute shared
serviceV on theS2 compliant facts. A2 returns the re-
sults of the execution of shared serviceV back toA1. The
results are syntactically converted from theS2 compliant
form back to theS1 compliant form and returned toT1.

The integration facilitated by the conceptual service
adapters is completely transparent. We have applied shared
serviceV to facts from theI1 factbase just as though they
were facts fromI2.

10. Conclusion

Work on this project is a continuing effort leading to-
ward the implementation of an integration of four program
comprehension tools. We are interested in demonstrating
small-scale integration to help with the initial construction
of a domain ontology that we hope to make available in a
later publication. The experiences gained from a prototype
integration among two program comprehension tools has
contributed significantly to our understanding of the chal-
lenges and benefits offered by integrating tools that support
program comprehension.

Diversity among program comprehension tools is good
thing because it leads to the development of new and in-
novative solutions to problems that are directly relevant to
software maintainers. As we mentioned in the introduction,
the main barrier to more widespread application of tools that
support maintenance tasks is the lack of integration that ex-
ists between them.

In this paper we have presented a new integration
methodology for program comprehension tools. We started
by showing that program comprehension tools have many
similarities in their architecture and operational character-
istics. Taking full advantage of this, we outlined how spe-
cially designed adapters and a domain ontology can be used

together to allow these tools to integrate transparently with
each other.

Acknowledgements

This work was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) as
part of the Consortium for Software Engineering Research
(CSER).

References

[1] I. T. Bowman, M. W. Godfrey, and R. C. Holt. “Connecting
Architecture Reconstruction Frameworks”. InProceedings
of the 1st International Symposium on Constructing Soft-
ware Engineering Tools (CoSET’99), pages 43–54, Los An-
geles, CA, May 1999.

[2] P. Chen. “The Entity Relationship Model – Toward a Unified
View of Data”. ACM Transactions on Database Systems,
1(1):9–36, 1976.

[3] E. J. Chikofsky and J. H. Cross II. “Reverse Engineering and
Design Recovery: A Taxonomy”.IEEE Software, 7(1):13–
17, January/February 1990.

[4] S. Demeyer, S. Ducasse, and S. Tichelaar. “Why FAMIX
and not UML?”. InProceedings of UML’99, volume 1723 of
Lecture Notes in Computer Science. Springer-Verlag, 1999.

[5] J. Ebert, B. Kullbach, and A. Winter. “GraX: Graph Ex-
change Format”. InProceedings of the Workshop on Stan-
dard Exchange Formats (WoSEF) at ICSE’00, Limerick, Ire-
land, 2000.

[6] R. Elmasri and S. B. Navathe.Fundamentals of Database
Systems. Addison-Wesley, 3rd edition, 2000.

[7] M. W. Godfrey. “Practical Data Exchange for Reverse En-
gineering Frameworks: Some Requirements, Some Expe-
rience, Some Headaches”.Software Engineering Notes,
26(1):50–52, January 2001.

[8] R. C. Holt, A. Winter, and A. Scḧurr. “GXL: Toward a Stan-
dard Exchange Format”. InProceedings of the 7th Working
Conference on Reverse Engineering (WCRE’00) Panel on
Reengineering Exchange Formats. IEEE Computer Society
Press, November 2000.

[9] D. Jin, J. R. Cordy, and T. R. Dean. “Transparent Reverse
Engineering Tool Integration Using a Conceptual Transac-
tion Adapter”. InProceedings of the 7th European Confer-
ence on Software Maintenance and Reengineering (CSMR
2003), pages 399–408, Benevento, Italy, March 2003.

[10] T. C. Lethbridge. Requirements and Pro-
posal for a Software Information Exchange For-
mat (SIEF) Standard, November 1998. URL:
http://www.site.uottawa.ca/˜tcl/papers/
sief/standardProposalv1.html.

[11] S. R. Tilley, S. Paul, and D. B. Smith. “Towards a Frame-
work for Program Understanding”. InProceedings of the
4th International Workshop on Program Comprehension
(IWPC’96), pages 19–28, Berlin, Germany, March 1996.

[12] S. Woods, L. O’Brien, T. Lin, K. Gallagher, and A. Quilici.
“An Architecture For Interoperable Program Understanding
Tools”. InProceedings of the 6th International Workshop on
Program Comprehension (IWPC’98), pages 54–63, 1998.

