
Synthesis of State Machine Models

Nafiseh Kahani
Queen's University, Canada

kahani@cs.queensu.ca

Mojtaba Bagherzadeh
University of Ottawa, Canada

m.bagherzadeh@uottawa.ca

James R. Cordy
Queen's University, Canada

cordy@cs.queensu.ca

Abstract

The automated synthesis of behavioural models in the form of state

machines (SMs) from higher-level specifications has a high poten-

tial impact on the efficiency and accuracy of software development

using models. In this paper, inspired by program synthesis tech-

niques, we propose a model synthesis approach that takes as input a

structural model of a system and its desired system properties, and

automatically synthesizes executable SMs for its components. To

this end, we first generate a synthesis formula for each component,

consistent with the system properties, and then perform a State

Space Exploration (SSE) of each component, based on its synthesis

formula. The result of the SSE is saved in a Labeled Transition

System (LTS), for which we then synthesize detailed actions for

each of its transitions. Finally, we transform the LTSs into UML-RT

(UML real-time profile) SMs, and integrate them with the origi-

nal structural models. We assess the applicability, performance,

and scalability of our approach using several different use cases

extracted from the literature.

CCS Concepts

· Software and its engineering→Model-driven software en-

gineering;

Keywords

MDD, MDE, State Machine, Model Synthesis

ACM Reference Format:

Nafiseh Kahani, Mojtaba Bagherzadeh, and James R. Cordy. 2020. Synthesis

of State Machine Models. In ACM/IEEE 23rd International Conference on

Model Driven Engineering Languages and Systems (MODELS ’20), October

18ś23, 2020, Virtual Event, Canada. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3365438.3410936

1 Introduction

Model-driven development (MDD) advocates the use of models

during the entire software development process. By leveraging

abstraction and automation, MDD techniques can simplify commu-

nication and design activities, increase productivity and compat-

ibility between systems, and boost development efficiency [1ś4].

Despite the promised benefits, application of MDD in practice has

not yet reached its full potential [5]. One of the important reasons

is related to the complex and time-consuming process of designing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MODELS ’20, October 18ś23, 2020, Virtual Event, Canada

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7019-6/20/10. . . $15.00
https://doi.org/10.1145/3365438.3410936

and creating the models, which often requires special expertise and

experience [6]. To deal with this problem, several approaches have

been proposed to automate various parts of the modelling process,

including the synthesis of behavioural models in the form of state

machines (SMs) from higher-level specifications [7ś10].

The main techniques for automatically synthesizing SMs focus

on: (1) deriving behavioural models from system-level scenarios

(scenario-based synthesis), and (2) identifying models from high-

level properties, such as Linear Temporal Logic (LTL) specifications

(correct-by-construction synthesis). The first of these, scenario-

based synthesis (e.g., [11, 12]), leverages positive/negative scenarios

(specified in a variety of ways, such as UML sequence diagrams)

to derive behaviour models. Inductive learning techniques (e.g.,

grammar induction) are used to generate SMs compatible with the

scenarios. Scenarios are focused and straightforward; however, they

are just partial examples of the desired or undesired behaviour. A

complete set of scenarios needs to be truly representative of the

desired system. Such scenarios are often unavailable, difficult to

prepare, or difficult to check for correctness and completeness.

The second technique, correct-by-construction synthesis (e.g.,

[13ś15]), synthesizes a correct-by-construction design for a reactive

system (if it exists), based on a temporal logic specification of the

system created by users. The synthesized system is guaranteed to

meet the system specification. However, the high computational

complexity of the search algorithm can make it impractical for

large systems. To deal with the scaling issue, some work limits the

temporal specification to fragments of LTL, for example, General

Reactivity of Rank 1 (GR(1)) [16], in order to improve efficiency.

Satisfiability-Modulo-Theory (SMT) solvers have been shown to

have some of the key functionality necessary for program synthesis,

without the need for the design tool developer to implement a solver

or a custom design-space search algorithm to find a solution [17].

SMT solvers have been successfully applied in several practical

applications [18], such as generating optimal code sequences [19],

general-purpose peephole optimizers [20], automating repetitive

programming tasks, and completion of a program sketch [18].

Inspired by the SMT solver-based program synthesis techniques,

in this work we transform system properties and a structural model

of a Real-time Embedded (RTE) system into a set of quantifier-free

first-order logical formulas, thus reducing the synthesis of state

models to the solution of the formulas. More specifically, our ap-

proach accepts a structural model of an RTE system, and a set of

system properties defining system invariants and pre/post condi-

tions using OCL-like expressions. It then synthesizes an executable

SM for each component of the system, in four phases: (1) It gener-

ates a synthesis formula for each component, which is consistent

with system properties and structural models, and respects the exe-

cution semantics of the component. (2) It performs a State Space

Exploration (SSE) by enumeration of all possible input messages of

the component. Each step of the SSE solves the synthesis formula

MODELS ’20, October 18–23, 2020, Virtual Event, Canada Nafiseh Kahani, Mojtaba Bagherzadeh, and James R. Cordy

in a different context, based on input messages and the current exe-

cution state. The result of the 𝑆𝑆𝐸 is saved as a Labeled Transition

System (LTS). (3) The 𝐿𝑇𝑆 produced in phase 2 does not include ac-

tions (i.e., action code). A backtracking algorithm is used to search

over the set of possible actions to find a sequence of actions for

each transition. During the search, each action is executed symbol-

ically and checked based on the synthesis formula, to ensure its

consistency with the system properties. (4) Finally, we apply state

minimization techniques inspired by existing work to minimize the

number of states in the LTSs, transform them into UML-RT SMs

[21], and integrate them with the structural models.

This work complements the state of the art in the area of model

synthesis, by providing an end-to-end solution using SMT-solvers

that is directly integrated with a production MDD tool (Papyrus-RT

[22, 23]). The most important contributions of the work are: (1) A

systematic approach and relevant formalization to leverage SMT

solvers for the synthesis of SM models, and a publicly-available im-

plementation [24] for follow-up research. (2) An automated method

for the synthesis of well-formed UML-RT SM models with detailed

specifications, including actions on transitions, which yields syn-

thesized SMs that are ready to be executed. Existing design-by-

construction techniques often synthesize Büchi-automata or LTS

without actions, which can not be directly executed or used by

MDD tools. At best, existing scenario-based work preserves actions

that are already explicitly specified in input scenarios.

The remainder of this paper is organized as follows. In Section

2, we provide background on the specification and modeling for-

malisms used in our solution, and introduce a running example. In

Section 3, we provide a detailed description of the individual phases

of our model synthesis approach. Section 4 evaluates our approach

by analyzing its applicability and performance.We overview related

work in Section 5, and conclude in Section 6.

2 Background

In this section, we describe the terms and notations we use to

specify the structural model of a system, the execution semantics of

the system, and system properties. We also introduce the example

system we use as a running example in this paper.

Definition 1. Read function (Projection). Let tp be a tuple of

attributes ⟨𝑎1, . . . , 𝑎𝑛⟩, where 𝑎1 . . . 𝑎𝑛 refer to attributes’ names.

We use tp.𝑎𝑖 to denote reading the value of attribute 𝑎𝑖 . For example,

we use person.name to read the value of attribute name of tuple

person = ⟨name, family⟩.

Definition 2. StructuralModel of aReal-timeEmbedded (RTE)

System. We define a protocol/interface as a set of pairs (𝑚,𝑑),

where 𝑚 ∈ M (i.e., a universal set of messages) is a message,

and 𝑑 ∈ {𝑖𝑛𝑝𝑢𝑡, 𝑜𝑢𝑡𝑝𝑢𝑡} specifies whether a message is consumed

(𝑖𝑛𝑝𝑢𝑡 message) or produced (𝑜𝑢𝑡𝑝𝑢𝑡 message). A message can have

a payload, which is the set of values conveyed by the message. We

define a component as a tuple ⟨P, V, 𝛽⟩, where P ⊆ P (i.e., the

universal set of ports) is a set of ports,V is a set of variables, and 𝛽

refers to the specification of the component’s behaviour, which is de-

fined using a SM. A port is defined as a pair (𝑡, 𝑐𝑜𝑛 𝑗𝑢𝑔𝑎𝑡𝑒𝑑), where

𝑡 ∈ I refers to the type of the port (a protocol), and 𝑐𝑜𝑛 𝑗𝑢𝑔𝑎𝑡𝑒𝑑 ∈

{true, false} specifies whether or not the port is conjugated. The di-

rection of messages of conjugated ports is reversed. Finally, the

structural model of a system is defined as a tuple ⟨C,I, 𝑐𝑜𝑛, 𝑖𝑛⟩,

where C is a set of components, I is a set of protocols, 𝑐𝑜𝑛 is a

connectivity relationship ⊆ P×P , and 𝑖𝑛 is an acyclic containment

relationship ⊆ C × C. Whenever two ports 𝑝1, 𝑝2 are connected

by 𝑐𝑜𝑛 (i.e., (𝑝1, 𝑝2) ∈ 𝑐𝑜𝑛) then both have the same type (i.e.,

𝑝1.𝑡 = 𝑝2.𝑡) and exactly one of them must be conjugated. This

condition ensures that connected ports are ‘compatible’.

Definition 3. Timed Behaviours. RTE systems often have timed

behaviour that needs to be specified. To support time in this work,

we assume that an RTE system contains a timing interface (start-

Timer, input), (timeout, output), and a component RTS (run-time

service) with a port of type timing. Components requiring timing

services then use a connection with the RTS component to treat

timing events as messages.

Definition 4. Action Language. We assume the existence of an

action language that supports primitive operations such as access-

ing/updating variables, arithmetic/boolean expressions, and send-

ing messages, but do not define a particular syntax for it.

Definition 5. State Machines (SMs). A SM is defined as a tu-

ple ⟨S,T , 𝑖𝑛⟩. Where S = S𝑏 ∪ S𝑐 ∪ S𝑝 is a set of states, T is

a set of transitions, and 𝑖𝑛 ⊆ S𝑐 × (S ∪ T) denotes an acyclic

containment relationship. States can be basic (S𝑏), composite (S𝑐),

or pseudo-states (S𝑝). Basic states are primitive states whose execu-

tion remains in until an outgoing transition is triggered. Composite

states encapsulate a sub-state machine. Pseudo-states are transient

control-flow states. There are six kinds of pseudo-states, including

initial, choice-point, history, junction-point, entry-point, and exit-

point. Composite and basic states can have entry and exit actions

that are coded using an action language. Note that, with the excep-

tion of the initial state, our approach synthesizes state machines

without composite or pseudo-states.

Definition 6. Transition. Let 𝑖𝑛𝑝 (𝑐) refer to the messages that

can be received by a component 𝑐 owning a SM. A transition 𝑡 is a

5-tuple ⟨𝑠𝑟𝑐, 𝑔𝑢𝑎𝑟𝑑, 𝑡𝑟𝑖𝑔, 𝑎𝑐𝑡, 𝑑𝑒𝑠⟩, where 𝑠𝑟𝑐, 𝑑𝑒𝑠 ∈ 𝑆 refer to non-

empty source and destination of the transition respectively, 𝑔𝑢𝑎𝑟𝑑

is a logical expression coded using the action language, 𝑡𝑟𝑖𝑔 ⊆

𝑖𝑛𝑝 (𝑐) is a set of messages that trigger the transition, and 𝑎𝑐𝑡 is the

transition’s action coded using the action language.

Definition 7. Execution Semantics of a SM. We use a labeled

transition system (LTS), which is a tuple ⟨Σ,A, 𝜎0,→⟩ to capture

the execution of the SM of component 𝑐 of system 𝑠 . Σ is a set of

execution states,A is a set of actions, 𝜎0 ∈ Σ is the initial execution

state, and→ is a transition relation (execution step). An execution

state has a snapshot (𝑒) of a map, E, from component variables to

values. Two execution states 𝜎 , 𝜎 ′ are considered equal when their

snapshots are the same (𝜎.𝑒 = 𝜎 ′.𝑒). The initial state 𝜎0 .𝑒 is set to

default (initial) values of the variables, which are 0 for Integer and

false for Boolean variables.

An execution step is captured as a tuple ⟨𝜎, 𝑎𝑐𝑡, 𝑚, 𝑔, 𝜎 ′⟩ (i.e.,

𝜎
𝑚 [𝑔]
−−−−→
𝑎𝑐𝑡

𝜎 ′) that, upon receiving message𝑚 (triggering message),

evaluates the logical expression 𝑔 (guard). If the guard holds, the

execution moves from execution state 𝜎 (current execution state)

to execution state 𝜎 ′ (next execution state) while executing action

𝑎𝑐𝑡 ∈ A that may update variables (E) and produce outputs. Note

Synthesis of State Machine Models MODELS ’20, October 18–23, 2020, Virtual Event, Canada

Controller
(CTR)

Door
Actuator

Engine
Actuator

Environment
(ENV)

ENVP
stopTrain()
moveTrain()
closeDoor()
openDoor()
emergency(pressed)

doorP
open()
close()

typed

engineP
move()
stop()

base port (server)conjugate port (client)

Figure 1: A Simplified Train Controller System

that often only actions and relevant execution states are captured by

an LTS, but we also capture the relevant triggering message and the

guard. This extension helps us to capture all relevant information

of the execution that is necessary for the generation of SMs.

The execution of a system can be defined as a collection of

its components’ executions, which interact with each other by

passing messages. We assume that system execution is managed

by a run-time service (RTS), which is responsible for scheduling

and message-passing between components, and guarantees that an

incoming message will be fully processed before the processing of

the next message starts (run-to-completion semantics). It also sends

the message 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 to all components to begin their execution,

which results in an execution step from 𝜎0 to 𝜎 ′. The message

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 is the first message processed by all components.

Definition 8. System Properties. System properties (𝑆𝑝𝑟𝑜𝑝) cap-

ture the system’s (non-)functional properties in the form of OCL-

like constraints. 𝑆𝑝𝑟𝑜𝑝 is defined as a tuple ⟨𝑆𝑖𝑛𝑣, 𝑀𝑐𝑜𝑛𝑑 ⟩, where

𝑆𝑖𝑛𝑣 denotes a set of invariants defined as a quantifier-free first-

order logic formula, which must hold during the entire execution

of the system. 𝑀𝑐𝑜𝑛𝑑 denotes a non-empty set of message condi-

tions. A message condition,𝑚𝑐 , of message𝑚 is defined as a set

of pairs ⟨𝑚𝑝𝑟𝑒 ,𝑚𝑝𝑜𝑠𝑡 ⟩, where𝑚𝑝𝑟𝑒 ,𝑚𝑝𝑜𝑠𝑡 are quantifier-free first-

order logic formulas specified based on two consecutive execution

states 𝜎 and 𝜎 ′, defining how receiving message𝑚 changes 𝜎 into

𝜎 ′. If the𝑚𝑝𝑟𝑒 (pre-condition) holds based on a snapshot of 𝜎 , then

the reception of 𝑚 will cause an execution step from 𝜎 to 𝜎 ′, in

which the𝑚𝑝𝑜𝑠𝑡 (post-condition) must then hold. The𝑚𝑝𝑟𝑒 pre-

condition can only be defined based on the current values of the

variables (in the snapshot of 𝜎) and the payload of 𝑚, whereas

the𝑚𝑝𝑜𝑠𝑡 post-condition can be defined based on the payload of

message𝑚, and the current and next values of the variables (in the

snapshots of 𝜎 and 𝜎 ′ respectively).𝑀𝑐𝑜𝑛𝑑 must always contain an

entry for the 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 message that has no pre-condition.

2.1 A Running Example
We use the simplified train software system [8] shown in Fig. 1

to illustrate important concepts throughout the paper. The system

is composed of four components: a train Controller (CTR), an Envi-

ronment (ENV), a Door, and an Engine. We assume that users’ inputs

including pressing emergency key are handled by ENV. The CTR

component receives input from the ENV components, and controls

actuators for the Engine and Door. As shown in Fig. 1, there are

three interfaces, EnginP, DoorP, and ENVP to manage communica-

tion between the components. One message of ENVP has payload

(parameters): pressed is a Boolean value that indicates whether the

passenger has pressed the emergency key. In addition, CTR has a

Boolean variable emergency that encodes the train’s emergency

1 Constraints TrainExample {

2 Invariant R2 {moving =⇒ (closed ∧ ¬emergency)}
3 Invariant R3 {emergency =⇒ (¬closed ∧ ¬moving)}
4 Message initialize () // MC_1

5 Post: ¬closed ∧ ¬moving ∧ ¬emergency
6 Message open() // MC_2

7 Post: ¬closed
8 Message close() // MC_3

9 Post: closed

10 Message move() // MC_4

11 Post: moving

12 Message stop() // MC_5

13 Post: ¬moving
14 Message emergency(pressed) // MC_6 R1

15 Pre: pressed

16 Post: emergency ∧ ¬moving ∧ ¬closed
17 Message emergency(pressed) // MC_7 R1

18 Pre: ¬pressed
19 Post: ¬emergency
20 Message openDoor () // MC_8

21 Post: ¬closed
22 Message closeDoor () // MC_9

23 Post: closed

24 Message moveTrain () // MC_10

25 Post: moving

26 Message stopTrain () // MC_11

27 Post: ¬moving
28 }

Listing 1: System Constraints of the Running Example (R1-

R5 are defined in Sec. 2.1)

status, Engine has a Boolean variable moving indicating whether

the train is presently in motion, and Door has a Boolean variable

closed that indicates whether the door is closed.

The train must fulfill the following requirements. R1: When the

emergency key is pressed (i.e., an emergency message is received

with payload pressed=true), the train must stop, and its door should

be opened immediately. R2: The train can only move when the door

is closed and the emergency key is not pressed. R3: When the train

is in emergency status, the train must not move, and its doors must

be kept open. R4: User commands that are sent to CTR by ENV (e.g.,

messages openDoor and moveTrain) must be handled appropriately.

Listing 1 shows a script of the system properties in our notation

for the running example. Invariant R2 and R3 address the R2 and R3

requirements respectively. The remainder of the script specifies the

conditions for the input messages of the components.

The scope of components’ variables is global, and they can be

used throughout the script. This allows the user to declare system

properties based on overall system execution rather than individual

components. Thus the user does not need to be concerned with the

required interactions for fulfilling them. By default, references to a

variable in pre-conditions and post-conditions refer to its current

and next values respectively. To refer to the current value of a

variable var in post-conditions, the notation cur_var is used. The

payload of a message is indicated in parentheses following the

message name (e.g., emergency(pressed), lines 14-16).

3 Approach

Overview. Figure 2 presents an overview of our approach to au-

tomatically generating a SM for each component that satisfies all

system properties and contains all the necessary details for exe-

cution (i.e., states, transitions, and actions). We assume as input a

structural model of the system in the form of UML-RT structure

MODELS ’20, October 18–23, 2020, Virtual Event, Canada Nafiseh Kahani, Mojtaba Bagherzadeh, and James R. Cordy

Structure
 Models

Pre/Post
Constraints

SMT Formulas Incomplete
 LTSs

Complete
 LTSs

1
2 3 4

UML-RT
State Machines

(USMs)

Generation
 of SMT Formulas State Space

Exploration
Synthesis of

Actions
LTS to USM

Transformation

output input
Processing phase

Figure 2: Overview of our approach

Table 1: Helper functions

Function Description

𝑐𝑢𝑟𝑉 (𝑣) returns a new variable of the same type as 𝑣 prefixed with

𝑐𝑢𝑟_

𝑛𝑒𝑥𝑉 (𝑣) returns a new variable of the same type as 𝑣 prefixed with

𝑛𝑒𝑥𝑡_

𝑖𝑛𝑝 (𝑐) returns input messages of component 𝑐

𝑖𝑛𝑝𝑉 (𝑚) accepts a message𝑚 and returns a Boolean variable 𝑖𝑛𝑝_𝑚

𝐼𝐷 (𝑚𝑐) creates unique Boolean variables𝑀𝐶𝑖 where (𝑖 ∈ N) for mes-

sage condition𝑚𝑐

𝑟𝑒 𝑓 (𝑓) returns a set of variables updated in 𝑓 formula

𝑐𝑢𝑟𝐹 (𝑓) returns a new formula in which the system variables used by

formula 𝑓 are substituted by their corresponding ones from

the current variables (∈ 𝑉𝑐𝑢𝑟)

𝑐𝑜𝑛𝑑 (𝑚) returns message conditions of𝑚 message

𝑛𝑒𝑥𝐹 (𝑓) returns a new formula in which the system variables used by

formula 𝑓 are substituted by their corresponding ones from

the next variables (∈ 𝑉𝑛𝑒𝑥𝑡)

𝑢𝑛𝑟𝑒 𝑓 (𝑓) returns system variables not updated by the formula 𝑓

models, and the system properties expressed in the OCL-like no-

tation introduced in Def. 8. Table 1 lists helper functions that are

used in the remainder of this section. Our approach consists of four

phases, as follows.

Phase 1. Generation of Synthesis Formulas. Our approach re-

duces the execution of a component to solving an SMT formula

(i.e., a first-order logic formula without quantifiers), referred to as

a synthesis formula, which allows symbolic execution of the com-

ponent. The generated synthesis formulas are consistent with the

system properties, structural model, and the execution semantics

of the component discussed in Def. 7.

Phase 2. State Space Exploration. This phase takes the synthesis

formulas and the structure model of the system as inputs, performs

a SSE for each component, and produces an output LTS. The ex-

ecution steps and states in the exploration are restricted to those

that satisfy the synthesis formula. The SSE traverses the reachable

execution states based on the possible inputs of the components,

and each step of the exploration is reduced to solving the synthe-

sis formula. We assume that the synthesized models are executed

by a run-time system that supports run-to-completion, in order

to guarantee that the execution steps cannot be interrupted. We

also assume no shared variables between components, and that

components only communicate with each other through message

passing. Both of these assumptions are reasonable and supported

by MDD tools such as IBM RSA-RTE [25].

Phase 3. Synthesis of Actions. The LTSs generated in Phase 2

encode the execution states and the execution steps between them;

however, the actions of the execution steps are as yet𝑢𝑛𝑘𝑛𝑜𝑤𝑛 (Def.

7). In this phase, for each incomplete LTS, we perform a backtrack-

ing search over the possible actions for each execution step, and

synthesize a sequence of actions for the step. The actions are syn-

thesized based on symbolic execution. Therefore, the synthesized

actions do not account for the run-time exception. For example, the

sending of a message to a component may fail during the run-time.

Phase 4. Transformation of LTSs to State Machines. Finally,

taking advantage of existing state minimization techniques [8, 26],

we minimize the number of states in the LTSs, transform them to

executable SMs using model transformation, and integrate them

with the structural model. The result of the synthesis is a UML-RT

model compatible with existing MDD tools such as Papyrus-RT.

3.1 Phase 1: Generation of Synthesis Formulas
In the first phase, we generate a synthesis formula for each

component, consistent with the system properties and execution

semantics of the component. In the following, first we describe the

variables on which synthesis formulas are defined, and then explain

how a synthesis formula is generated for each component.

3.1.1 Variables of a Synthesis Formula We assume that 𝑉 𝑠
𝑠𝑦𝑠 is a set

that contains all the variables of system 𝑠 . The set of variables of

the synthesis formula for component 𝑐 is then defined as:

𝑉 𝑐
𝑎𝑙𝑙
← 𝑉 𝑠

𝑐𝑢𝑟 ∪𝑉
𝑠
𝑛𝑒𝑥𝑡 ∪𝑉

𝑐
𝑚𝑠𝑔 ∪𝑉

𝑐
𝑝𝑎𝑦

where

𝑉 𝑠
𝑐𝑢𝑟 ← {∀𝑣 ∈ 𝑉

𝑠
𝑠𝑦𝑠 : 𝑐𝑢𝑟𝑉 (𝑣)} and

𝑉 𝑠
𝑛𝑒𝑥𝑡 ← {∀𝑣 ∈ 𝑉

𝑠
𝑠𝑦𝑠 : 𝑛𝑒𝑥𝑉 (𝑣)}

include variables to capture snapshots of 𝜎 and 𝜎 ′ respectively,

𝑉 𝑐
𝑚𝑠𝑔 ← {∀𝑚 ∈ 𝑖𝑛𝑝 (𝑐) : 𝑖𝑛𝑝𝑣 (𝑚)}

consists of Boolean variables to capture the reception of the input

messages that drive execution of components.𝑉 𝑐
𝑝𝑎𝑦 denotes the set

of all components’ input messages’ payloads. For example, 𝑉𝐶𝑇𝑅
𝑎𝑙𝑙

,

the variables of the synthesis formula for the component 𝐶𝑇𝑅 in

the context of the running example include:

𝑉𝐶𝑇𝑅
𝑐𝑢𝑟 = {𝑐𝑢𝑟_𝑚𝑜𝑣𝑖𝑛𝑔, 𝑐𝑢𝑟_𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦, 𝑐𝑢𝑟_𝑐𝑙𝑜𝑠𝑒𝑑},

𝑉𝐶𝑇𝑅
𝑝𝑎𝑦 = {𝑝𝑟𝑒𝑠𝑠𝑒𝑑},

𝑉𝐶𝑇𝑅
𝑚𝑠𝑔 = {𝑖𝑛_𝑚𝑜𝑣𝑒𝑇𝑟𝑎𝑖𝑛, . . . , 𝑖𝑛_𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦},

𝑉𝐶𝑇𝑅
𝑛𝑒𝑥𝑡 = {𝑛𝑒𝑥𝑡_𝑚𝑜𝑣𝑖𝑛𝑔, 𝑛𝑒𝑥𝑡_𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦, 𝑛𝑒𝑥𝑡_𝑐𝑙𝑜𝑠𝑒𝑑}

3.1.2 Synthesis Formula For component 𝑐 in system 𝑠 with prop-

erties 𝑆𝑝𝑟𝑜𝑝 , we generate a synthesis formula 𝐹𝑐𝑠𝑦𝑛𝑡 , defined as the

conjunction of four formulas:

𝐹𝑐𝑠𝑦𝑛𝑡 ← 𝐹𝑠𝑖𝑛𝑣 ∧ 𝐹
𝑐
𝑚𝑠𝑔 ∧ 𝐹

𝑐
𝑠𝑒𝑚 ∧ 𝐹

𝑐
𝑐𝑜𝑛

Where 𝐹𝑠𝑖𝑛𝑣 (the invariant formula) is a conjunction of formulas

corresponding to the system invariants (𝑆𝑝𝑟𝑜𝑝 .𝑆𝑖𝑛𝑣). For each in-

variant, two formulas are generated, to capture the invariant in

Synthesis of State Machine Models MODELS ’20, October 18–23, 2020, Virtual Event, Canada

both 𝜎 and 𝜎 ′. The invariant formula is same for all components,

since they are defined at the system level. They assure that the

invariant holds at any given execution state.

𝐹𝑠𝑖𝑛𝑣 ←
∧

𝑖∈𝑆𝑝𝑟𝑜𝑏 .𝑆𝑖𝑛𝑣

𝑐𝑢𝑟𝐹 (𝑖) ∧ 𝑛𝑒𝑥𝐹 (𝑖)

For example, the invariant formula Invariant R2 (Listing 1) of the

train system (𝐹 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑣), looks like this:

(𝑐𝑢𝑟_𝑚𝑜𝑣𝑖𝑛𝑔 =⇒ (𝑐𝑢𝑟_𝑐𝑙𝑜𝑠𝑒𝑑 ∧ ¬𝑐𝑢𝑟_𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦))∧

(𝑛𝑒𝑥𝑡_𝑚𝑜𝑣𝑖𝑛𝑔 =⇒ (𝑛𝑒𝑥𝑡_𝑐𝑙𝑜𝑠𝑒𝑑 ∧ ¬𝑛𝑒𝑥𝑡_𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦))

𝐹𝑐𝑚𝑠𝑔 (the messages formula) is generated based on the message

conditions of the component’s input. It captures the defined con-

ditions, and allows simulation of the reception of messages, and

application of the related conditions. The message formula of com-

ponent 𝑐 of system 𝑠 is defined as follows.

𝐹𝑐𝑚𝑠𝑔 ←
∧

𝑚∈𝑖𝑛𝑝 (𝑐)

©«

∧
f∈𝑐𝑜𝑛𝑑 (𝑚)

(𝐹 2
𝑚𝑠𝑔︷ ︸︸ ︷

𝑖𝑛𝑝𝑉 (𝑚) ∧

𝐹 3
𝑚𝑠𝑔︷ ︸︸ ︷

𝑐𝑢𝑟𝐹 (f.𝑚𝑝𝑟𝑒) =⇒

𝑛𝑒𝑥𝐹 (f.𝑚𝑝𝑜𝑠𝑡)︸ ︷︷ ︸
𝐹 4
𝑚𝑠𝑔

∧
(∧

𝑣∈𝑢𝑛𝑟𝑒 𝑓 (f.𝑚𝑝𝑜𝑠𝑡)

𝑐𝑢𝑟𝑉 (𝑣) = 𝑛𝑒𝑥𝑉 (𝑣)
)

︸ ︷︷ ︸
𝐹 5
𝑚𝑠𝑔

)
ª®®®®®®®®®®¬︸ ︷︷ ︸

𝐹 1
𝑚𝑠𝑔

For every condition of a message, we define an implication (𝐹 1𝑚𝑠𝑔)

consisting of five parts. Parts 𝐹 2𝑚𝑠𝑔 and 𝐹 3𝑚𝑠𝑔 capture the reception

of the message and its pre-condition respectively. The conjunction

of 𝐹 2𝑚𝑠𝑔 and 𝐹 3𝑚𝑠𝑔 assures that the post-condition only applies when

the relevant message is received and its pre-condition holds in 𝜎 .

𝐹 4𝑚𝑠𝑔 corresponds to the post-condition of the message condi-

tion itself, and 𝐹 5𝑚𝑠𝑔 assures that only the variables updated in the

post-condition are affected by the execution, and non-updated vari-

ables remain intact, checked by the conjunction of equalities for all

unused variables in the 𝜎 and 𝜎 ′ states.

For example, the message condition MC_7 (lines 17-19 of List-

ing 1) is translated like this, where each part of the formula is

annotated with the relevant label:

(𝐹 2𝑚𝑠𝑔 : 𝑖𝑛_𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦) ∧ (𝐹 3𝑚𝑠𝑔 : ¬𝑝𝑟𝑒𝑠𝑠𝑒𝑑) =⇒

∧ (𝐹 4𝑚𝑠𝑔 : ¬𝑛𝑒𝑥𝑡_𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦)∧(𝐹 5𝑚𝑠𝑔 : 𝑐𝑢𝑟_𝑐𝑙𝑜𝑠𝑒𝑑 = 𝑛𝑒𝑥𝑡_𝑐𝑙𝑜𝑠𝑒𝑑

∧ 𝑐𝑢𝑟_𝑚𝑜𝑣𝑖𝑛𝑔 = 𝑛𝑒𝑥𝑡_𝑚𝑜𝑣𝑖𝑛𝑔)

𝐹𝑐𝑠𝑒𝑚 (the semantic formula) is the conjunction of four formu-

las dealing with the execution semantics of the component. More

specifically, it assures that the SSE for the synthesis formula of a

component: (1) is deterministic (i.e., only one or no pre-condition

holds for the reception of a message in any state), (2) respects the

run-to-completion semantics, and (3) does not change the current

state (variables) if none of the message formulas applies. The se-

mantic formula for component 𝑐 of system 𝑠 is defined as follows.

𝐹𝑐𝑠𝑒𝑚 ←

((𝐹 1
𝑠𝑒𝑚︷ ︸︸ ︷⊕

𝑚∈𝑖𝑛𝑝 (𝑐)

⊕
f∈𝑐𝑜𝑛𝑑 (𝑚)

𝑖𝑛𝑝𝑉 (𝑚) ∧ 𝑐𝑢𝑟𝐹 (f.𝑚𝑝𝑟𝑒)
)

∧
⊕

𝑚∈𝑖𝑛𝑝 (𝑐)

𝑖𝑛𝑝𝑉 (𝑚)

︸ ︷︷ ︸
𝐹 2
𝑠𝑒𝑚

)
∨

(
¬𝐹 1𝑠𝑒𝑚 =⇒

∧
𝑣∈𝑉 𝑠

𝑠𝑦𝑠

𝑐𝑢𝑟𝑉 (𝑣) = 𝑛𝑒𝑥𝑉 (𝑣)

︸ ︷︷ ︸
𝐹 3
𝑠𝑒𝑚

)

Algorithm 1: State Space Exploration of a Component

1 Input; a system (𝑠), a component(𝑐), its variables (𝑉 𝑐
𝑎𝑙𝑙
) ,

its synthesis formula (𝐹𝑐𝑠𝑦𝑛𝑡)

2 Output; An LTS (𝑙𝑡𝑠)
3 Create initial state 𝜎0 based on the default values of

variables and add it to 𝑙𝑡𝑠
4 Let 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 be a FIFO list and push 𝑙𝑡𝑠.𝜎0 into it

5 Let 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 be an empty set

6 Let 𝑢𝑛𝑠𝑎𝑓 𝑒 be an execution state

7 𝑖𝑛𝑝 ← {𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒} # assures initialize is processed first

8 while{candidates is not empty}

9 pop 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 into 𝜎
10 add 𝜎 to 𝑣𝑖𝑠𝑖𝑡𝑒𝑑
11 for {𝑚𝑠𝑔 in 𝑖𝑛𝑝}
12 # enum returns a dummy value for msg without payload

13 for(𝑒 𝑖𝑛 enum(𝑚𝑠𝑔.𝑝𝑎𝑦𝑙𝑜𝑎𝑑))
14 Set the context (𝐹𝑐𝑐𝑜𝑛) based on 𝜎 , 𝑚𝑠𝑔, and 𝑒
15 if (∃𝑚𝑜𝑑𝑒𝑙 |= 𝐹𝑐𝑠𝑦𝑛𝑡)

16 Create 𝜎′ based on 𝑉 𝑠
𝑛𝑒𝑥𝑡 from 𝑚𝑜𝑑𝑒𝑙

17 if (𝜎 ̸= 𝜎′) # no change in variables

18 add 𝜎
𝑚𝑠𝑔{𝑒} [𝑀𝐶𝑝𝑟𝑒]
−−−−−−−−−−−−−−→

𝑢𝑛𝑘𝑛𝑜𝑤𝑛
𝜎′ to 𝑙𝑡𝑠

19 if (𝜎′ ̸∈ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑)
20 push 𝜎′ onto 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠
21 else

22 add 𝜎
𝑚𝑠𝑔{𝑒} [𝑀𝐶𝑝𝑟𝑒]
−−−−−−−−−−−−−−−−−→
𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑉 𝑖𝑜𝑙𝑎𝑡𝑒𝑑

unsafe to 𝑙𝑡𝑠

23 𝑖𝑛𝑝 ← 𝑖𝑛𝑝 (𝑐)\{𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒}

𝐹 2𝑠𝑒𝑚 assures that only one message can be received and pro-

cessed at any execution state (run-to-completion) by defining ex-

clusive disjunction (⊕) of the message input variables. Similarly,

𝐹 1𝑠𝑒𝑚 assures that only one message condition can be applied to

the reception of a message (deterministic execution). 𝐹 3𝑠𝑒𝑚 assures

that if none of the pre-conditions of the received message hold, no

variable in the system is changed.

Finally, 𝐹𝑐𝑐𝑜𝑛 (the context formula) is a dynamic part of the syn-

thesis formula that allows appending the execution context to the

synthesis formula, by encoding the known values of variables and

using an SMT solver to find the unknown values of variables. In this

work, we use the context formula to specify the variables’ values

of 𝜎 (𝑉𝑐𝑢𝑟) and incoming messages (𝑉𝑚𝑠𝑔) as the known parts. We

then use the SMT solver to see if there is a possible execution step

simply by checking the satisfiability of the synthesis formula (by

solving for the unknown part). If an execution step exists, we use

the satisfying model (i.e., an assignment to all variables in 𝑉𝑎𝑙𝑙 that

makes the synthesis formula true) for 𝑉𝑛𝑒𝑥𝑡 (i.e., 𝜎
′). This method

is the core of our SSE, discussed later.

As an example, the following shows a context formula used to

find the next execution state when an emergency message is re-

ceived (emergency=true) with a payload (pressed=true). The current

execution state is such that the train is not moving, the emergency

key is not pressed, and the door is closed.

known = 𝑖𝑛_𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦 ∧𝑝𝑟𝑒𝑠𝑠𝑒𝑑 ∧¬𝑐𝑢𝑟_𝑚𝑜𝑣𝑖𝑛𝑔 ∧

¬𝑐𝑢𝑟_𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦 ∧ 𝑐𝑢𝑟_𝑐𝑙𝑜𝑠𝑒𝑑

unknown = 𝑛𝑒𝑥𝑡_𝑚𝑜𝑣𝑖𝑛𝑔=?, 𝑛𝑒𝑥𝑡_𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦=?, 𝑛𝑒𝑥𝑡_𝑐𝑙𝑜𝑠𝑒𝑑=?

3.2 Phase 2: State Space Exploration
Algorithm 1 presents our breadth-first SSE method, which ac-

cepts a system 𝑠 , a component 𝑐 , the relevant variables (𝑉 𝑐
𝑎𝑙𝑙

), and

synthesis formula of 𝑐 (𝐹𝑐𝑠𝑦𝑛𝑡), and returns an LTS for the compo-

nent. The algorithm first initializes all variables to their default

values and creates the initial state of the LTS, defines a first-in

MODELS ’20, October 18–23, 2020, Virtual Event, Canada Nafiseh Kahani, Mojtaba Bagherzadeh, and James R. Cordy

<F,F,F>

visited

<F,T,F>

visited

<F,F,T>

visited

unsafe

in_initialize cur_moving cur_emergency cur_closed

in_emergency pressed cur_moving cur_emergency cur_closed

in_openDoor cur_moving cur_emergency cur_closed

in_closeDoor cur_moving cur_emergency cur_closed

in_emergency pressed cur_moving cur_emergency cur_closed

in_moveTrain cur_moving cur_emergency cur_closed

in_stopTrain cur_moving cur_emergency cur_closed

Figure 3: The first two iterations of the exploration of CTR.

Edges are labeled with the related context formulas. States

are labelled with tuples representing the variables <moving,

emergency, closed>

first-out (FIFO) list (𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠) of candidate next states for the

exploration, adds the initial state into 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 , and defines a set

𝑣𝑖𝑠𝑖𝑡𝑒𝑑 to keep track of explored states to ensure that each state

is explored only once. For each candidate state (𝜎), the main loop

of the exploration then injects all possible input messages of 𝑐 by

effective enumeration of possible values of their payload (Sec. 3.2.1).

It then sets the context formula (Sec. 3.1.2) to reflect the message,

its payload and the state being explored (𝜎). Assume that 𝑀𝐶𝑝𝑟𝑒

refers to the pre-condition of the applied message condition, the

algorithm calls the SMT solver for each context, and continues to

one of the following cases:

(1) If 𝐹𝑐𝑠𝑦𝑛𝑡 is satisfied and 𝜎 ̸= 𝜎 ′, a new execution step of the

exploration (corresponding to a positive scenario), whose action

is 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 (i.e., its action needs to be synthesized based on the

known parts of the step) is added to 𝑙𝑡𝑠 , then 𝜎 ′ is added to the

candidate state if it has not been explored before (i.e., 𝜎 ′ ̸∈ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑).

The possible execution steps from 𝜎 ′ will be explored in a future

iteration.

(2) If 𝐹𝑐𝑠𝑦𝑛𝑡 is not satisfied then at least one of the invariants has

been violated. A new execution step is added, whose action is set to

𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑉𝑖𝑜𝑙𝑎𝑡𝑒𝑑 , which shows that processing the input message

will violate the invariant. Normally an output LTS encodes only

acceptable execution states. In this case, we also explicitly encode

impossible states as unsafe. These negative execution scenarios will

be essential to accurate synthesis of the final SM.

3.2.1 Efficient Enumeration of the Message Payload When the in-

jected message has a payload with type Integer, the SSE should

include all possible execution steps that can be caused by different

values of the message payload. One method would be to simply

enumerate all possible values of the payload. However, this can

increase SSE time significantly. Instead, we use an execution path

analysis technique to enumerate the minimum possible set of values

of the payload necessary to cover all possible next execution steps.

For each payload 𝑝 : (1) First, we create a dependency treewith the

payload 𝑝 as its root node. (2) For each dependentmessage condition

(𝑚𝑐) of the payload (i.e., each𝑚𝑐 whose pre/post conditions use

the payload), we add a child to the root labeled with𝑚𝑐𝑝𝑜𝑠𝑡 whose

connecting edge is labeled with𝑚𝑐𝑝𝑟𝑒 . (3) For each leaf node 𝑛 of

the tree, we detect the dependent message conditions based on the

variable(s) used in the label of 𝑛, and add them as children of 𝑛

Algorithm 2: Synthesis of Unknown Actions of an LTS

1 Input A system 𝑠, its variables (𝑉 𝑠
𝑎𝑙𝑙

) , A component(𝑐),
its 𝑙𝑡𝑠)

2 Output A Completed LTS (𝑙𝑡𝑠)
3 Let 𝑚𝑜𝑑𝑒𝑙 be a map that keeps the satisfying assignment (

model) of a formula

4 for (𝑠𝑡𝑝 in 𝑙𝑡𝑠. −→ such that 𝑠𝑡𝑒𝑝.𝑎𝑐𝑡 is 𝑢𝑛𝑘𝑛𝑜𝑤𝑛)

5 Let 𝑉𝑎𝑠𝑠𝑖𝑔𝑛 be the possible assignments of local

variables of 𝑐
6 Let 𝐶𝑚𝑠𝑔 be message conditions of output messages of 𝑐
7 Let 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 be an empty set

8 Let 𝑎𝑐𝑡𝑠 be a LIFO list

9 if{𝑠𝑦𝑛𝑡𝐴𝑐𝑡 (𝑠𝑡𝑝.𝜎, 𝑠𝑡𝑝.𝜎′,𝑉𝑎𝑠𝑠𝑖𝑔𝑛,𝐶𝑚𝑠𝑔, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑, 𝑎𝑐𝑡𝑠)}
10 𝑠𝑡𝑝.𝑎𝑐𝑡 ← 𝑎𝑐𝑡𝑠
11 else 𝑠𝑡𝑝.𝑎𝑐𝑡 ← 𝑢𝑛𝑠𝑜𝑙𝑣𝑎𝑏𝑙𝑒
12

13 Function syntAct(State 𝜎 ,𝜎′; Set 𝑉𝑎𝑠𝑠𝑖𝑔𝑛 , 𝐶𝑚𝑠𝑔 , 𝑣𝑖𝑠𝑖𝑡𝑒𝑑; LIFO

𝑎𝑐𝑡𝑠)
14 if (𝜎 = 𝜎′)
15 return true #solution is complete

16 else

17 for (𝑎𝑐 in (𝑉𝑎𝑠𝑠𝑖𝑔𝑛 ∪𝐶𝑚𝑠𝑔) \ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑)
18 if (𝑎𝑐 in 𝑉𝑎𝑠𝑠𝑖𝑔𝑛 ∧ assign(𝑎𝑐,𝜎 ,𝐹𝑐𝑠𝑦𝑛𝑡 ,𝑚𝑜𝑑𝑒𝑙)) ∨ (𝑎𝑐 in

𝐶𝑚𝑠𝑔∧ send(𝑎𝑐,𝜎, 𝜎′,𝑚𝑜𝑑𝑒𝑙))
19 read 𝑉 𝑠

𝑛𝑒𝑥𝑡 from 𝑚𝑜𝑑𝑒𝑙 saved by assign or send

functions into 𝜎1
20 Let Δ be the set of variables whose values are

different in 𝜎 and 𝜎′

21 Let Δ
′ be the set of variables whose values are

different in 𝜎1 and 𝜎′

22 if(Δ ⊆ Δ
′) continue

23 push 𝑎𝑐 onto 𝑎𝑐𝑡𝑠 and add 𝑎𝑐 to 𝑣𝑖𝑠𝑖𝑡𝑒𝑑
24 if(syntAct(𝜎1,𝜎

′ 𝑉𝑎𝑠𝑠𝑖𝑔𝑛 , 𝐶𝑚𝑠𝑔 , 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 , 𝑎𝑐𝑡𝑠))
25 return true

26 else pop 𝑎𝑐 from acts #backtrack

27 return false

labeled as in step 1. (4) We repeat step 3 until the leaf nodes no

longer have any dependent message conditions. During payload

enumeration, we create a path formula for each node in the tree

which encodes the path from the root to the node. The goal is to

find a value for the payload that makes the path formula satisfiable

based on the current variable values 𝑉 𝑠
𝑐𝑢𝑟 . For efficiency, we begin

the enumeration from the leaf nodes. The rationale is that if a value

of the payload can satisfy the leaf path formula, there is no need to

enumerate other nodes on the path.

Example. Figure 3 shows two iterations of the SSE for the CTR

component of our train example.

3.3 Phase 3: Synthesis of Actions
This phase synthesizes the 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 actions of the generated

LTSs from the previous phase. The action synthesis for an execution

step focuses on finding a sequence (loop and branch free) of as-

signment and message sending actions to the relevant components

that can change the execution state from 𝜎 to 𝜎 ′ without violating

any system properties. To synthesize the actions of a step 𝑠𝑡𝑝 of

component 𝑐 , first the variables are divided into two groups, based

on whether they belong to the component 𝑐 (local variables of 𝑐)

or not (external variables). Intuitively, component 𝑐 can directly

change (using assignment actions) its own local variables. However,

to change external variables, it must send messages to the relevant

other components.

Algorithm 2 shows our method for synthesizing 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 ac-

tions of an LTS. For each step with an 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 action, it first calcu-

lates all possible actions based on local and external variables, i.e.,

possible assignments of local variables based on the post-conditions

Synthesis of State Machine Models MODELS ’20, October 18–23, 2020, Virtual Event, Canada

<T,F,T>

<F,F,T>

<F,F,F>

<F,T,F>

no progressviolate R1

ba
ck

tra
ck

ing

send(stopTrain, , ')

send(closeDoor, , ')

send(openDoor, , ')

assign(emergency, , ')

send(openDoor, , ')

1
2

4
3

5

Figure 4: An example of the backtracking search to find a se-

quence of actions of an execution step between 𝜎 = ⟨𝑇, 𝐹,𝑇 ⟩

and 𝜎 ′ = ⟨𝐹,𝑇 , 𝐹 ⟩ of 𝐶𝑇𝑅. States are labelled with tuples rep-

resenting the variables <moving, emergency, closed>

of messages (𝑉𝑎𝑠𝑠𝑖𝑔𝑛) and output messages (𝐶𝑚𝑠𝑔). It then initializes

the variables 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 and 𝑎𝑐𝑡𝑠 and calls function 𝑠𝑦𝑛𝑡𝐴𝑐𝑡 .

𝑠𝑦𝑛𝑡𝐴𝑐𝑡 explores all possible sequences of actions using a depth-

first full backtracking search. It begins a search path by selection

and application of one of the possible actions. If result of the action

is satisfiable and changes at least one variable (i.e., makes progress

towards reaching the target state), then it adds the action to 𝑎𝑐𝑡𝑖𝑜𝑛𝑠

and 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 and continues the path by recursively calling 𝑠𝑦𝑛𝑡𝐴𝑐𝑡 .

Otherwise, it backtracks one step (i.e., pops the last action) and tries

another action. The search terminates when a solution is found, or

when there are no more paths to explore.

The application of an action is achieved by calling the functions

𝑎𝑠𝑠𝑖𝑔𝑛 and 𝑠𝑒𝑛𝑑 . The function 𝑎𝑠𝑠𝑖𝑔𝑛 whose code is omitted due to

space limitation, takes an assignment expression, execution states

𝜎 , and a synthesis formula. It creates a context by setting 𝑉𝑐𝑢𝑟
based on 𝜎 and𝑉𝑛𝑒𝑥𝑡 based on 𝜎 and the assignment action. It then

checks the satisfiability of synthesis formula based on the context.

If the formula is satisfiable, it returns 𝑡𝑟𝑢𝑒 and saves the satisfying

models, which can be used by 𝑠𝑦𝑛𝑡𝐴𝑐𝑡 .

The function 𝑠𝑒𝑛𝑑 whose code is omitted due to space limitation,

accepts a synthesis formula belonging to the component that re-

ceives the message, and two execution states 𝜎 and 𝜎 ′ as input. If

the message of𝑚𝑐 has a payload, it creates a context formula (𝐹𝑐𝑜𝑛)

by setting the message variable of𝑚 (𝑚𝑖𝑛), 𝑉𝑐𝑢𝑟 from 𝜎 , variables

of 𝑉𝑛𝑒𝑥𝑡 that can be affected by message condition 𝑚𝑐 from 𝜎 ′,

and payload of the message. If the result is satisfiable, it returns

𝑡𝑟𝑢𝑒 and saves the satisfying model. In addition to the value of the

next variables, the model contains the value of the payload that the

message should convey. Otherwise, if the message of𝑚𝑐 has no

payload, it resets 𝐹𝑐𝑜𝑛 by setting the message variable of𝑚 (𝑚𝑖𝑛),

𝑉𝑐𝑢𝑟 from 𝜎 , and variables of𝑉𝑛𝑒𝑥𝑡 that can be affected by message

condition𝑚𝑐 from 𝜎 ′. It checks for the satisfiability again, saves

the resulting model, and returns the results, if they are satisfiable.

Otherwise, it returns false.

Figure 4 shows an example backtracking search in the context of

component 𝐶𝑇𝑅. Variable emergency is a local variable of compo-

nent CTR itself; however, CTR must send messages to components

Engine and Door to close/open doors and stop/move the train.

3.4 Phase 4: Transformation of LTSs to SMs
An LTS captures the execution of a SM, possibly with a large num-

ber of states, some of which can be merged with each other. There

is a strong body of work that addresses the problem of finding and

merging the states of an LTS (state minimization), to create an LTS

with a smaller number of states whose semantics are equivalent to

Algorithm 3: Minimization of an LTS

1 Let allPairs be a list of all possible pairs (𝜎1, 𝜎2) of

execution states of 𝑙𝑡𝑠
2 while p in allPairs

3 mergeStates(𝑝.𝜎1, 𝑝.𝜎2)
4 remove dangling pairs because of the merge

5 remove the unsafe execution state and unsafe steps

6

7 Function mergeStates(Execution State 𝜎1 , 𝜎2)
8 if (𝜎1 = 𝜎2)
9 return true

10 for 𝑒1 in {𝑒 : 𝑒.𝜎 = 𝜎1 ∧ ¬ safe(e)}

11 if (̸∃ 𝑒2 : 𝑒2 .𝜎 = 𝜎2 ∧ ¬𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡 (𝑒2 .𝑔.𝑒1 .𝑔) ∧ 𝑠𝑎𝑓 𝑒 (𝑒2))
12 continue

13 return false # unsafe merge

14 for 𝑒1 in {𝑒 : 𝑒.𝜎 = 𝜎1 ∧ 𝑠𝑎𝑓 𝑒 (𝑒)}
15 if (∃𝑒2 : 𝑒2 .𝜎 = 𝜎2 ∧ ¬𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡 (𝑒2 .𝑔.𝑒1 .𝑔) ∧ ¬𝑠𝑎𝑓 𝑒 (𝑒2))
16 return false # unsafe merge

17 for 𝑒2 in (𝑒 : 𝑒.𝜎 = 𝜎2 ∧ 𝑒.𝑚 = 𝑒1 .𝑚 ∧ 𝑠𝑎𝑓 𝑒 (𝑒))
18 if (disjoint(𝑒1 .𝑔, 𝑒2 .𝑔))
19 continue

20 else if (𝑒1 .𝑎𝑐𝑡 ̸= 𝑒2 .𝑎𝑐𝑡)
21 return false # non -deterministic

22 else if not (mergeStates(𝑒1 .𝜎
′, 𝑒2 .𝜎

′))

23 return false # non -determinism

24 Change the destination (𝜎′) of execution steps that end

at 𝜎2 to 𝜎1
25 remove 𝜎2 and return true

the original. In this phase, inspired by these existing algorithms [8],

we propose a state minimization algorithm for the extended LTS.

Definition 9. Un(safe) Execution Step. An execution step is

unsafe if it ends at the unsafe state (Sec. 3.2), and is safe otherwise.

Based on this definition, we assume that function 𝑠𝑎𝑓 𝑒 (𝜎) returns

true if 𝜎 is safe, and false otherwise.

Algorithm 3 presents our method for the minimization of an LTS.

It begins by creating a list of all possible pairs (𝜎1, 𝜎2) of execution

states of the LTS. It then iterates over all of the pairs and tries to

merge them. After eachmerge, pairs related to themerged execution

states are removed from the list. Finally, it removes the unsafe

execution state and all relevant steps, since execution must not

reach them. (Note that they were added during SSE (Sec. 3.2) to

help guide the merging process.)

Merging Execution States. Two execution states (𝜎1, 𝜎2) are

consideredmergeable if their merge (1) does not cause un-resolvable

non-determinism, and (2) does not lead to the merge of a safe execu-

tion state with an unsafe one (unsafe merge). Function mergeStates

of Algorithm 3 presents our merge method, which accepts two

execution states 𝜎1 and 𝜎2 and tries to merge 𝜎2 into 𝜎1. It first

checks to see that none of the outgoing unsafe execution steps of

𝜎1 is matched with an outgoing safe execution step of 𝜎2 whose

triggering messages are equal, and whose guards are not disjoint

(line 10-12). Second, it performs a similar check for the outgoing

safe execution steps (line 17-19). These two checks ensure that no

unsafe execution state is merged with a safe execution state. Third,

it checks if the merging of states would cause non-determinism,

which can happen in two cases (line 20-23): (a) when two execu-

tion steps have the same trigger, non-disjoint guards, and different

actions, and (b) when two execution steps have the same trigger,

non-disjoint guards, and the same actions. In case (a), the merge

is discarded. In case (b), we try to resolve the merge by merging

MODELS ’20, October 18–23, 2020, Virtual Event, Canada Nafiseh Kahani, Mojtaba Bagherzadeh, and James R. Cordy

closeDoorC[]/
doorPr.closeDoor().send()

S_1

openDoorC[]/
doorPr.openDoor().send()

emergency[pressed]/
doorPr.openDoor().send()

isEmergency=true

stopTrainC[]/
enginPr.stopTrain().send()

moveTrainC[]/
enginPr.moveTrain().send()

emergency [pressed]/
isEmergency=true

emergency[pressed]
enginPr.stopTrain().send
doorPr.openDoor().send

isEmergency=true

S_3

S_4

S_2emergency [pressed]/
isEmergency=false

Figure 5: A final UML-RT state machine of the running ex-

ample (for the CTR component). Transitions are labelled

with trigger[guard]/actions.

subsequent execution state pairs recursively, to obtain a determin-

istic solution. If merging subsequent states is not possible, then the

merge of 𝜎, 𝜎 ′ is discarded, and the algorithm continues to the next

candidate pair.

Integrating LTSs into the UML-RT Model as SMs. Finally,

we use model transformations using to convert the transformed

LTSs to SMs, and integrate them with the structural models. Note

that since the result of exploration is saved into an EMF model, this

phase is accomplished using a straightforward model transforma-

tion (whose details are not discussed here due to space limitations).

The interested readermay refer to the source code of the transforma-

tion [24] (method transfromLTS2UMLRT in file ComponentStateSpaceExplorer

.java). Figure 5 shows the final synthesized UML-RT SM of the

running example (for the CTR component). Note that all transitions

include their triggers, guards, and actions, and the model can be

directly executed using existing MDD tools such as Papyrus-RT.

3.5 Soundness of the Proposed Approach
Each step in phase 2 (exploration in Sec. 3.2) and phase 3 (action

synthesis in Sec. 3.3) of our approach is verified against the synthesis

formulas as part of our process. Thus, the results are sound with

respect to the original intentions of users (the system properties), if

the synthesis formulas are correctly constructed in phase 1 (Sec. 3.1).

The construction of synthesis formulas has been formally explained,

and we follow a standard verification process, whose correctness

can be easily checked using the details presented in this Section.

The minimization algorithm of phase 4 (Sec. 3.4) prevents non-

determinism, avoids the merging of safe and unsafe executions,

and never removes any safe execution step. These three conditions

ensure that the minimized LTS preserves all of the semantics of

the original LTS. While we have not presented a formal proof of

behaviour preservation here, such a proof can be constructed by

(1) defining a bi-simulation relation [27] between the LTSs based

on our extensions to execution steps (Def. 7), and (2) showing that

the bi-simulation relation holds between the synthesized LTS and

its minimized version. Note that the bi-simulation relation entails

behaviour preservation [28].

4 Evaluation

We have created a prototype that embodies our approach. Our

prototype uses Z3 [29] as the SMT solver, the Epsilon Object Lan-

guage [30] to implement the model transformations, Xtext [31] to

capture and validate system properties, and the Eclipse Modeling

Framework (EMF) [32] to edit LTSs. The source code of the tool,

along with experimental results, is publicly available online [24].

To assess the applicability, performance, and scalability of our

approach, we consider the following two research questions, and

compare with previous work where possible.

RQ1 (Applicability): Can our approach synthesize executable

SM models from high-level specifications?

RQ2 (Performance):What is the performance and scalability

of our approach?

4.1 Case Studies
We undertook a study of the most relevant work in the synthesis

of SM models in the context of MDD. When a sufficient description

was available, we extracted the case study used by each approach.

This resulted in the capture of four case studies: Automatic Teller

Machine (ATM) Controller [11, 33ś36], Mine Pump Controller [26],

Cache Server [37], and Train Controller [8, 26]. A detailed discussion

of the case studies can be found in [38].

We observed that the state space of each of the published case

studies could be effectively minimized as part of SSE, and therefore

their state space was not large enough to assess the scalability of

our bounded SSE and LTS minimization approaches. (The largest

case study’s LTS contains only 128 states.) For this reason, we added

the Digital Watch, described in [39], as a complementary case study.

The behaviour specification of the digital watch requires integer

variables, and yields a state space large enough to draw conclusions

about the scalability and effectiveness of our bounded exploration

and state minimization approaches.

4.2 Experiments
Specification. We specified the system properties of the case

studies using the OCL-like language described in Def. 8. On average,

each system took about one hour to specify in our notation. To

ensure the quality of the specifications, the specified properties

were checked by the other authors and improved upon if there

were any issues. The published description of all of the case studies

focuses only on the controller component, and the specification of

the cache server is partial. We therefore evaluated our approach

primarily based on the controller component of each case study. In

all five case studies the complexity of the controller component is

higher than any other component, and thus represents the most

challenging synthesis problem.

Synthesis of Behavioural Models. We then used our proto-

type to synthesize the SM of each of the case studies from its system

properties specification in our OCL-like language. The prototype

was configured to separately output the time of each phase, the

size and complexity of specifications, the size of the state space,

and the generated LTSs. The maximum length for the sequence of

generated actions was set to 5.

BoundedExploration. Since the state space of the digital watch

is large (more than 20 billion states), to test scalability we ran the

SSE with depth bounds ranging from 1 − 60. To examine the effect

of bounded exploration on the quality of the synthesized SMs, we

repeated the synthesis of the ATM and mine pump case studies

using depth bounds ranging from 3-8, and compared the resulting

SMs.

Synthesis of State Machine Models MODELS ’20, October 18–23, 2020, Virtual Event, Canada

Table 2: Results and computation time of synthesis of case studies

Case study
Spec. Size LTS Size SM Size Synt. Time (Seconds.)

Cov. %
V MC ES ESt S T Act. (LOC) SMT G. SSE Act. M Tr Over.

Train System 3 13 5 12 5 13 11 .001 0.65 0.33 0.06 .34 1.04 100%

Cache Server 4 8 11 21 4 15 15 .001 1.21 0.11 .009 0.34 1.67 100%

ATM 6 16 8 10 3 10 19 .001 2.04 0.16 0.008 0.31 2.52 100%

Mine Pump 7 21 128 864 9 106 110 .001 50.51 11.40 0.17 0.38 62.46 100%

Digital Watch 6 6 3724 8915 1830 8915 1767 .001 471.42 8.93 18.14 7.48 505.97 60%

V : Variables, MC: Message Conditions, ES: Execution State, ESt: Execution Step, S: State, T : Transition, Act.: Action, LOC: Lines of Code

SMT G.: SMT Formula Generation, SSE: State Space Exploration, M: Minimization, Tr : Transformation, Over.: Overall, Cov.: Coverage,

Execution Environment. We used a computer equipped with

a 3.5 GHz Intel Core 𝑖7 and 16 GB of memory for all experiments.

The java heap size was set to 10 GB.

4.3 RQ1: Applicability
Our prototype successfully synthesized the behavioural models

for all five case studies from their specification in our OCL-like lan-

guage. Table 2 summarizes the complexity of the case studies in our

notation, and the results of our automated synthesis of behavioural

models for them. The Spec. Size column presents the complexity of

the specification of each case study in terms of the number of vari-

ables V and message conditions MC. The mine pump specification

requires the highest number of variables and message conditions.

State Space Exploration (SSE). As discussed in Sec. 3, the re-

sults of SSE are saved as LTSs. The LTS Size column shows the

number of execution states ES and execution steps ESt for the con-

troller component’s LTS (i.e., the component with the largest LTS)

in each case study. The LTSs for all of the case studies except the

digital watch are relatively small, and easily explored by our tools.

Bounded exploration to a maximum depth of 60 was used for the

digital watch, which resulted in 3,724 states and 8,915 execution

steps. The number of execution steps actually explored (EESt) and

possible execution states (PES) is larger than the number of states

and execution steps in the LTSs, since all unsafe states are merged

into one unsafe state, and execution steps that do not change the

state are not saved. All of the case studies (except the digital watch)

come directly from the published evaluations of other state-of-the-

art techniques, and our tool’s ability to easily explore them clearly

demonstrates its effectiveness compared to the other methods.

Synthesis of Actions. The Cov.% column of Table 2 shows the

percentage of execution steps whose actions were successfully

synthesized. The high level of coverage indicates that the action

synthesis aspect of our approach can help automate much of the

coding related to communication and assignments in SMs. The

high level of coverage is not only due to our action synthesis algo-

rithm ś two assumptions of our method also contribute. First, the

search space for action sequences in our method is limited to only

sending messages and assigning local variables. Second, we limit

our sequences of actions to those that are loop and branch free.

The latter limitation explains the lower coverage of actions in the

digital watch case study, which requires branching. Nevertheless,

our generated actions are useful and practical, since writing actions

related to the communication between components is challeng-

ing in multi-component systems, and the number of variables and

messages in an embedded system is typically small and finite.

Effectiveness of Minimization of State and Final Synthe-

sized State Machines. As discussed, the LTSs are minimized and

then transformed into UML-RT SM models. The SM Size column

shows the size of the final SMs for the controller component of

each case study, in terms of the number of states S, transitions T,

and lines of code in the synthesized actions A (LOC). On average

our state minimization reduces the size of the LTSs by factor of

4.5 in the case studies, the Train System by 1, Cache Server by 2.7,

mine pump by 14.2, Digital Watch by 2, and ATM by 2.6. As a result

of minimization, the final SMs for all four case studies extracted

from the literature have fewer than 10 states, and can be easily

understood by users.

While the LTS of the digital watch is minimized significantly,

an SM with 1,830 states is clearly still not easily understood by

users. Our investigation showed that many of the states were not

merged due to actions that were not successfully synthesized (ref.

Table 2). By manually adding these actions, the LTS of the digital

watch is minimized to only two states and five transitions. Based

on the points mentioned above, we can safely conclude that our

state minimization techniques effectively reduce the size of the final

state machines.

Arguably, with the exception of the digital watch, the state space

of the case studies is not large. However, we should note that (1)

none of the related work reports a large case study, and (2) synthesis

techniques, even those in program synthesis, are still not mature

enough to be applied at industrial scale. Nevertheless, our method

and evaluation represents a significant step beyond the related

work, specifically because (a) the state space of the digital watch

(3,724 states) is more than 5 times larger than the state space of the

largest published industrial case study, with 658 states reported [33],

and (b) the synthesized SMs from our approach include executable

actions, which no other approach addresses.

4.4 RQ2: Computation Time and Scalability
The Synthesis Time column of Table 2 shows the computation

times (in seconds) for each phase of the synthesis for the case studies.

As may be expected, SSE accounts for most of the computation time

(93%), and generation of the synthesis formulas (SMT G.) takes very

little time in all cases. The overall synthesis time (Over.) for the four

case studies extracted from the literature ranges between 1 and 63

seconds (about a minute), which seems more than reasonable. The

overall synthesis time of the much larger digital watch case study is

505 seconds (8.5 minutes), more than practical for the exploration

and minimization of such a large state space (3,724 states).

To evaluate our method in the presence of a state space explosion,

we explored state space exploration with depth bounds ranging

MODELS ’20, October 18–23, 2020, Virtual Event, Canada Nafiseh Kahani, Mojtaba Bagherzadeh, and James R. Cordy

from 1 to 60 for the digital watch, and 3 to 8 for ATM and mine

pump. The results show that in each of these cases the final syn-

thesized SMs do not change after a relatively small bound (5 for

digital watch, 4 for ATM, and 5 for mine pump). This suggests

that bounded exploration can be an effective method to manage

state space explosion in the context of our work, and that the LTSs

generated from a bounded search can provide sufficient traces to

synthesize an SM covering the majority of the expected behaviour.

Nevertheless, this conclusion is based only on this particular set of

case studies. While they cover a range of typical cases, they may

not be representative of other systems.

In summary, given the reasonable performance of our approach

for the synthesis of all of the case studies (505 seconds for the digital

watch with 3, 724 states, and 2 - 63 seconds for the others) and

the effectiveness of bounded exploration in dealing with the state

space explosion, we conclude that our approach can be practical for

realistically sized embedded systems. Our current implementation

is also only a prototype, and its performance can still be tuned to

even greater efficiency in practice.

5 Related work

Synthesis of SMs to capture behaviour models of a system has

long been an active area of research [6, 8, 9, 12, 26, 33ś37, 40ś45].

Existing work can be categorized into two groups: scenario-based

synthesis, and correct-by-construction synthesis.

Scenario-based Synthesis. The main drawback of these meth-

ods is that defining a full set of scenarios to cover the entire de-

scription of system requirements is almost impossible, and often

impractical [8]. Following we discuss some of them that are most

close to our work. Harel et al. [6, 44] proposed a semi-automatic

synthesis approach to infer Statechart models from scenario-based

requirements specified using live sequence charts (LSCs). The work

relies on a play-in/play-out approach that includes user interaction

in the synthesis algorithm. Uchitel et al. [7, 33] presented an ap-

proach to generate LTSs for agents of a message sequence chart

(MSC). Damas et al. [8] proposed an approach to synthesize an LTS

from an MSC for the global system covering all positive scenar-

ios and excluding all negative ones. The generalization process is

guided by scenario questions asked of the end-user in an incremen-

tal synthesis process.

By contrast with these techniques, our approach does not re-

quire scenarios to be specified by users, and does not require user

interaction during synthesis. Instead, it requires only user-provided

OCL-like expressions to seed the synthesis process. Also, to make

the SMs executable and more complete, we synthesize actions for

the state transitions.

Whittle and Schumann [11] proposed an algorithm for automat-

ically generating UML statecharts to synthesize the behaviour of

component-based systems. The algorithm requires scenarios and

pre/post conditions for scenario interactions. Similarly to our work,

the pre/post conditions are expressed using OCL-like expressions

based on global state variables. Similarly to Uchitel’s work, the

synthesis algorithm takes only positive scenarios into account. By

contrast, our work does not require scenarios, and generates both

positive and negative scenarios by state space exploration.

Correct-by-construction Synthesis. Work (e.g., [13ś15]) in

this group attempts to synthesize a correct implementation of the

system based on a temporal logic specification of the system speci-

fied by users.

Game Theory-based Approaches. Several researchers [13, 15, 46,

47] have modelled the synthesis process, specified by the temporal

logic formula, as a game between the environment and the program.

A correct program is considered to be a winning strategy in this

game. Kupferman et al. [48] proposed a compositional reactive syn-

thesis algorithm that translates LTL formulas to nondeterministic

generalized Buchi automata.

Multi-agent-based Approaches. A control synthesis algorithm

for systems with multiple controllable agents has been studied

by several previous authors [49ś51]. Diaz et al. [49] proposed an

approach for low-level control synthesis of multi-agent systems

expressed as a finite state automaton. As a practical end-to-end

synthesis method, our work differs from correct-by-construction

work as follows. Our approach captures properties as message

conditions, which we argue are much easier to specify than LTL

formulas. Researchers in LTL-based synthesis (e.g., [15, 50]) identify

specification and understanding of LTL formulas as a challenge and

obstacle to use of their method. Also, to our knowledge, no correct-

by-construction work synthesizes action code. Without action code,

synthesized state machines cannot be executed. Also, LTL-based

work generates LTS or Büchi automata, by contrast, we generate

complete executable state machines.

Other Use of SMT Solvers. SMT solvers have been used in

several other techniques [52ś58], modelling the synthesis problem

as generation of a program that satisfies the specification.We review

these methods based on the classification of Gulwani [17].

Counter-example Guided (CEG) Inductive Synthesis. In thismethod

the aim is to look for new program candidates with respect to the

specification by iteratively generating counterexamples until a cor-

rect program is synthesized (e.g., [18]).

Sketching. Sketching is a synthesis approach that takes as input

a program with holes, which are then automatically filled to satisfy

a given specification (e.g., [53, 59, 60].

Super-optimizers. The goal here is to synthesize an optimal se-

quence of instructions that is functionally equivalent to a given

piece of code (e.g., [17, 52]).

6 Conclusion

In this paper we have presented a novel technique for synthesizing

behavioral models from high-level system specifications using SMT

solvers in the context of MDD. We described our approach in detail

and analyzed its applicability, performance, and scalability in a

number of different use cases. By contrast with existing work, our

approach is an end-to-end synthesis solution integrated with an

MDD tool and synthesizes detailed actions for the transitions of

the generated SMs.

To the best of our knowledge, our work is also the first work to

leverage SMT-Solvers for the synthesis of the models. An implemen-

tation of our approach is publicly available [24], and we are hopeful

that in follow-up research we can (1) improve the applicability and

scalability of the model synthesis, and (2) extend our approach to

support completion of incomplete (partial) SMs [61, 62].

Synthesis of State Machine Models MODELS ’20, October 18–23, 2020, Virtual Event, Canada

Acknowledgment

This work has been supported by the Natural Sciences and Engi-

neering Research Council of Canada (NSERC).

References

[1] K. Czarnecki and S. Helsen, łClassification of model transformation approaches,ž
in Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the
Context of the Model Driven Architecture, vol. 45, no. 3, 2003, pp. 1ś17.

[2] T. Mens and P. Van Gorp, łA taxonomy of model transformation,ž Electronic Notes
in Theoretical Computer Science, vol. 152, pp. 125ś142, 2006.

[3] N. Kahani and J. Cordy, łComparison and evaluation of model transformation
tools,ž in Tech. Rep. 2015-627. Queen’s University, Dec. 2015, pp. 1ś42.

[4] N. Kahani, M. Bagherzadeh, J. Cordy, J. Dingel, and D. Varró, łSurvey and classi-
fication of model transformation tools,ž Software and Systems Modeling, vol. 18,
no. 4, p. 2361ś2397, 2019.

[5] B. Selic, łWhat will it take? a view on adoption of model-based methods in
practice,ž Software and Systems Modeling, vol. 11, no. 4, pp. 513ś526, 2012.

[6] D. Harel, H. Kugler, and A. Pnueli, łSynthesis revisited: Generating statechart
models from scenario-based requirements,ž in Formal Methods in Software and
Systems Modeling, 2005, pp. 309ś324.

[7] S. Uchitel, G. Brunet, and M. Chechik, łBehavior model synthesis from properties
and scenarios,ž in Proc. 29th Intl. Conf. on Software Engineering, 2007, pp. 34ś43.

[8] C. Damas, B. Lambeau, P. Dupont, and A. V. Lamsweerde, łGenerating annotated
behavior models from end-user scenarios,ž IEEE Trans. on Software Engineering,
vol. 31, no. 12, pp. 1056ś1073, 2005.

[9] S. Uchitel and J. Kramer, łA workbench for synthesising behaviour models from
scenarios,ž in Proc. 23rd Intl. Conf. on Software engineering, 2001, pp. 188ś197.

[10] N. Kahani, łAutomodel: a domain-specific language for automatic modeling of
real-time embedded systems,ž in 2018 IEEE/ACM 40th International Conference on
Software Engineering: Companion (ICSE-Companion), 2018, pp. 515ś517.

[11] J. Whittle and J. Schumann, łGenerating statechart designs from scenarios,ž in
Proc. 22nd Intl. Conf. on Software engineering, 2000, pp. 314ś323.

[12] J. Whittle and P. K. Jayaraman, łSynthesizing hierarchical state machines from ex-
pressive scenario descriptions,ž ACM Trans. on Software Engineering and Method-
ology, vol. 19, no. 3, pp. 1ś45, 2010.

[13] R. Rosner, łModular synthesis of reactive systems,ž Ph.D. dissertation, 1992.
[14] E. Letier and W. Heaven, łRequirements modelling by synthesis of deontic input-

output automata,ž in 2013 35th International Conference on Software Engineering
(ICSE), 2013, pp. 592ś601.

[15] A. Pnueli and R. Rosner, łOn the synthesis of a reactive module,ž in Proceedings of
the 16th Symposium on Principles of Programming Languages, 1989, pp. 179ś190.

[16] S. Maoz, J. O. Ringert, and R. Shalom, łSymbolic repairs for GR(1) specifications,ž
in Proc. 41st Intl. Conf. on Software Engineering, 2019, pp. 1016ś1026.

[17] S. Gulwani, O. Polozov, and R. Singh, łFoundations and trends in programming
languages,ž ACM Trans. Comput. Log., vol. 4, no. 1-2, pp. 1ś119, 2017.

[18] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, łOracle-guided component-based
program synthesis,ž in Proc. 32nd Intl. Conf. on Software Engineering, 2010, pp.
215ś224.

[19] R. Joshi, G. Nelson, and K. Randall, łDenali: A goal-directed superoptimizer,ž in
PLDI, 2002, pp. 304ś314.

[20] S. Bansal and A. Aiken, łBinary translation using peephole superoptimizers,ž in
Proc. 8th USENIX Conf. on Operating Systems Design and Impl., 2008, pp. 177ś192.

[21] B. Selic, łUsing UML for modeling complex real-time systems,ž in Languages,
Compilers, and Tools for Embedded Systems, 1998, pp. 250ś260.

[22] Eclipse Foundation, łEclipse Papyrus for Real Time (Papyrus-RT),ž https://www.
eclipse.org/papyrus-rt, 2019, retrieved March 19, 2019.

[23] N. Kahani, N. Hili, J. Cordy, and J. Dingel, łEvaluation of UML-RT and Papyrus-RT
for modelling self-adaptive systems,ž in Proc. 9th Intl. Workshop on Modelling in
Software Engineering, 2017, pp. 12ś18.

[24] N. Kahani, M. Bagherzadeh, and J. Cordy, łUMLRTSynthesizer,ž https://github.
com/nafisehka/UMLRTSynthesizer, 2020.

[25] IBM, łIBM RSARTE,ž 2016, retrieved July 19, 2019. [Online]. Available:
https://www.ibm.com/developerworks/downloads/r/architect/index.html

[26] C. Damas, B. Lambeau, and A. Van Lamsweerde, łScenarios, goals, and state
machines: a win-win partnership for model synthesis,ž in Proc. 14th Intl. Symp.
on Foundations of Software Engineering, 2006, p. 197ś207.

[27] D. Sangiorgi, Introduction to bisimulation and coinduction. Cambridge University
Press, 2011.

[28] N. A. Lynch, Distributed algorithms. Elsevier, 1996.
[29] łZ3,ž https://github.com/Z3Prover/z3.
[30] D. S. Kolovos, R. F. Paige, and F. A. Polack, łThe Epsilon transformation language,ž

in Intl. Conf. on Theory and Practice of Model Transformations, 2008, pp. 46ś60.
[31] Xtext. (2017) Xtext. [Online]. Available: http://www.eclipse.org/Xtext.
[32] EMF. (2017) Eclipse Modeling Framework (EMF). [Online]. Available: https:

//www.eclipse.org/modeling/emf.

[33] S. Uchitel, J. Kramer, and J. Magee, łSynthesis of behavioral models from scenar-
ios,ž IEEE Trans. on Software Engineering, vol. 29, no. 2, p. 99ś115, 2003.

[34] S. Vasilache and J. Tanaka, łSynthesis of state machines frommultiple interrelated
scenarios using dependency diagrams,ž in In 8th World Multiconf. on systemics,
cybernetics and informatics, 2004, pp. 49ś54.

[35] R. Hennicker and A. Knapp, łActivity-driven synthesis of state machines,ž in Intl.
Conf. on Fundamental Approaches to Software Engineering, 2007, pp. 87ś101.

[36] A. Ali, D. Jawawi, and M. A. Isa, łScalable scenario specifications to synthesize
component-centric behaviour models,ž Intl. Journal of Software Engineering and
Its Applications, vol. 9, no. 9, pp. 79ś106, 2015.

[37] I. Krka, Y. Brun, G. Edwards, and N. Medvidovic, łSynthesizing partial component-
level behavior models from system specifications,ž in Proc. 7th Joint Meeting on
Foundations of Software Engineering, 2009, pp. 305ś314.

[38] N. Kahani, łSynthesis and verification of models using satisfiability modulo
theories,ž Ph.D. dissertation, 2020.

[39] D. Harel, łStatecharts: A visual formalism for complex systems,ž Science of Com-
puter Programming, vol. 8, no. 3, pp. 231ś274, 1987.

[40] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy, łInferring models
of concurrent systems from logs of their behavior with CSight,ž in Proc. 36th Intl.
Conf. on Software Engineering, 2014, pp. 468ś479.

[41] I. Buzhinsky and V. Vyatkin, łAutomatic inference of finite-state plant models
from traces and temporal properties,ž IEEE Trans. on Industrial Informatics, vol. 13,
no. 4, pp. 1521ś1530, 2017.

[42] N. Walkinshaw, R. Taylor, and J. Derrick, łInferring extended finite state machine
models from software executions,ž Empirical Software Engineering, vol. 21, no. 3,
pp. 811ś853, 2016.

[43] I. Krüger, R. Grosu, P. Scholz, and M. Broy, łFrom MSCs to statecharts,ž in Intl.
Workshop on Distributed and Parallel Embedded Systems (DIPES’98), 1999, p. 61ś71.

[44] D. Harel and H. Kugler, łSynthesizing state-based object systems from LSC
specifications,ž Intl. J. of Foundations of Computer Science, vol. 13, no. 1, pp. 5ś51,
2002.

[45] F. Vaandrager, łModel learning,ž Communications of the ACM, vol. 60, no. 2, pp.
86ś95, 2017.

[46] D. Dill, łTrace theory for automatic hierarchical verification of speed independent
circuits,ž MA: MIT press, vol. 24, pp. 1ś180, 1989.

[47] R. Alur and S. L. Torre, łDeterministic generators and games for LTL fragments,ž
ACM Trans. Comput. Log., vol. 5, no. 1, pp. 1ś25, 2004.

[48] N. P. O. Kupferman andM. Vardi, łSafraless compositional synthesis,ž in Computer
Aided Verification (CAV), 2006, pp. 31ś44.

[49] Y. Diaz-Mercado, A. Jones, C. Belta, and M. Egerstedt, łCorrect-by-construction
control synthesis for multi-robot mixing,ž in 54th IEEE Conf. on Decision and
Control (CDC), 2015, pp. 221ś226.

[50] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, łTemporal-logic-based reactive
mission and motion planning,ž IEEE Transactions on Robotics, vol. 25, no. 6, pp.
1370ś1381, 2009.

[51] R. Alur, S. Moarref, and U. Topcu, łCompositional and symbolic synthesis of
reactive controllers for multi-agent systems,ž in Information and Computation,
2018, pp. 616ś633.

[52] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan, łSynthesis of loop-free programs,ž
in PLDI, 2011, pp. 62ś73.

[53] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat, łCombinatorial
sketching for finite programs,ž ACM SIGPLAN Notices, vol. 49, no. 11, pp. 404ś415,
2006.

[54] E. Kneuss, I. Kuraj, V. Kuncak, and P. Suter, łSynthesismodulo recursive functions,ž
ACM SIGPLAN Notices, vol. 48, no. 10, pp. 407ś426, 2013.

[55] A. Reynolds, M. Deters, V. Kuncak, C. Tinelli, and C. Barrett, łCounterexample-
guided quantifier instantiation for synthesis in SMT,ž in Intl. Conf. on Computer
Aided Verification, 2015, pp. 198ś216.

[56] Z. Huang, Y. Wang, S. Mitra, G. E. Dullerud, and S. Chaudhuri, łController
synthesis with inductive proofs for piecewise linear systems: An SMT-based
algorithm,ž in 54th IEEE Conf. on decision and control (CDC), 2015, pp. 7434ś7439.

[57] S. Srivastava, S. Gulwani, and J. S. Foster, łFrom program verification to program
synthesis,ž in ACM Sigplan Notices, vol. 45, no. 1, 2010, pp. 313ś326.

[58] S. Itzhaky, S. Gulwani, N. Immerman, and M. Sagiv, łA simple inductive synthesis
methodology and its applications,ž in ACM Sigplan Notices, vol. 45, no. 10, 2010,
pp. 36ś46.

[59] A. Albarghouthi, S. Gulwani, and Z. Kincaid, łRecursive program synthesis,ž in
Intl. Conf. on computer aided verification, 2013, pp. 934ś950.

[60] A. Solar-Lezama, łThe sketching approach to program synthesis,ž in Asian Symp.
on Programming Languages and Systems, 2009, pp. 4ś13.

[61] M. Bagherzadeh, N. Kahani, J. Karim, and J. Dingel, łPMExec: An execution engine
of partial UML-RT models,ž in 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2019, pp. 1178ś1181.

[62] M. Bagherzadeh, N. Kahani, J. Karim, and J. Dingel, łExecution of partial state
machine models,ž IEEE Transactions on Software Engineering (TSE), pp. 1ś27, July
2020.

	Abstract
	1 Introduction
	2 Background
	2.1 A Running Example

	3 Approach
	3.1 Phase 1: Generation of Synthesis Formulas
	3.2 Phase 2: State Space Exploration
	3.3 Phase 3: Synthesis of Actions
	3.4 Phase 4: Transformation of LTSs to SMs
	3.5 Soundness of the Proposed Approach

	4 Evaluation
	4.1 Case Studies
	4.2 Experiments
	4.3 RQ1: Applicability
	4.4 RQ2: Computation Time and Scalability

	5 Related work
	6 Conclusion
	References

