
Bounded Verification of State Machine Models
Nafiseh Kahani

University of Ottawa
nkahani@uottawa.ca

James R. Cordy
Queen's University
cordy@cs.queensu.ca

Abstract
In this work, we propose a bounded verification approach for state
machine models that is independent of any model checking tools.
This independence is achieved by encoding the execution semantics
of state machine models as SMT formulas that reduce the verifica-
tion of a state machine to the satisfiability problem for its corre-
sponding formula. More specifically, our approach takes as input a
state machine model, a depth bound, and the system properties (as
invariants), and then automatically verifies models of systems in
a three-phase process: (1) First it generates all possible execution
paths of the model to the specified bound, and encodes each of the
execution paths as SMT formulas; (2) It then augments the SMT
formulas with the negation of the given invariants; and (3) Finally,
it uses an SMT solver to check the satisfiability of the instrumented
formula. We have applied our approach in the context of UML-
RT (the UML profile for modeling real-time embedded systems)
and assessed the applicability, performance, and scalability of our
approach using several case studies extracted from the literature.
ACM Reference Format:
Nafiseh Kahani and James R. Cordy. 2020. Bounded Verification of State
Machine Models. In Proceedings of ACM Conference (Conference’20). ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Model-Driven Development (MDD) has been successfully applied
in the development of Real-Time Embedded (RTE) systems, which
are supported by industrial-strength tools such as IBM Rational
Software Architect (IBM RSA RTE). State Machines (SMs) and their
variants (e.g., UML-RT state machines [1]) are one of the main
notations supported by tools tomodel the behaviour of RTE systems.
While many aspects of software development can potentially be
automated using SMs, thus far automation is mainly limited to code
generation, interpretation, and documentation. Other important
software development activities, such as testing and verification of
SMs, have yet to be fully automated [2].

The majority of the existing work on automatic verification and
analysis of SMs leverages existing model checking tools such as
SPIN [3] by translating the SM to the input language of the model
checker. This “translational” approach can take advantage of the
advanced optimizations and features of the existing model check-
ers. However, model checkers have typically been designed for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’20, October 2020, Montreal, Canada
© 2016 Association for Computing Machinery.
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

specific domains, for example, SPIN was developed to verify net-
work protocols [4]. This leads to a significant semantic mismatch,
as many features of modeling languages (e.g., the hierarchical struc-
ture of SMs) are not directly supported by the input languages of the
model checkers. This complicates the translation [5], which often
involves abstraction, simplification and complex transformations,
verification of which is required to ensure that the original intent
of the SMs is preserved. In addition, the output of model checkers
(e.g., counterexamples) is expressed in terms of the model checkers’
concepts rather than the SM. Thus, utilizing model checkers also
involves a reverse translation of their output back to the modeling
language, which again must be verified. These reverse translations
are critical, because without them the user is forced to match model
checker concepts to the original models by hand, which can be
confusing and error prone [4].

Satisfiability Modulo Theories (SMT) extends Boolean satisfia-
bility (SAT) by supporting useful first-order logical theories (e.g.,
arithmetic and bit-vectors) in addition to Boolean logic. SMT solvers
such as Z3 [6], whose performance has improved significantly in
the last two decades, are the key enabling technologies for various
software verification and analysis applications. Some practical ex-
amples are (but are not limited to) verification of device drivers [7],
bounded model checking [8], and program synthesis [9]. With the
exception of one or two other attempts [10, 11], the use of SMT
solvers for the verification and analysis of models is limited to static
models (e.g., class diagrams) and OCL constraints.

Inspired by existing program verification and analysis tech-
niques, this work relies on SMT solvers to address the bounded
verification of SM models, specified using UML-RT [12], the UML
profile for development of RTE systems. More specifically, our ap-
proach accepts as input the system properties (as invariants), a
bound for the verification, and a behaviour model of the system.
It then: (1) analyzes the model and extracts all possible execution
paths of the model to the specified bound, (2) encodes each of the
execution paths and instruments them with the given invariants
(as a path formula and instrumented path formula) and (3) uses
SMT solvers to verify the models by solving the instrumented path
formulas. We have evaluated our approach using a number of dif-
ferent case studies whose state-space varies from small to large.
The evaluation shows that the performance is reasonable, and the
approach can successfully verify the specified properties in all of
our cases.

This work complements previous work in the area of SM ver-
ification by providing a direct bounded verification approach for
SMs that is independent of existing model checkers. The most im-
portant contributions of this work are: (1) A systematic approach
and relevant formalization to encode the execution of SMs (more
specifically UML-RT state machines) as SMT-formulas. The encod-
ing fully respects the semantics of the SMs, without abstracting,
simplifying or ignoring any features. (2) A method for leveraging

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’20, October 2020, Montreal, Canada Nafiseh Kahani and James R. Cordy

USM of TrainController

emergency[pressed]/
emergency=true

t7

MainState (C1)

moveTrainC[emergency]/
send	moveTrain
trainMoving=true

¬

t3

doorClosed ()�1
openDoorC

[trainMoving]/
send	openDoor

doorClosed=false

¬

t6

closeDoorC[]/
send	closeDoor
doorClosed=true

t5

doorOpened ()�2

openDoorC[]/	
send	OpenDoor
doorClosed=false

t4

trainMoving ()�3

[trainMoving]/
send	stopTrain

trainMoving=false

t8

[trainMoving	
	doorClosed]

¬

∧

t9

t10

�ℎ1

[]/
send	openDoor
doorClosed=false

t11

�ℎ2t12[]/
doorClosed=true
trainMoving=false
emergency=false

t1

��1

t2

��2

��1

emergency[pressed]/
emergency=false

¬

t13

Figure 1: Behaviour of the train controller CTR

SMT solvers for the practical bounded verification of SMs. Similarly
to model checking techniques [13] that use binary decision dia-
grams (BDD) [14], bounded verification techniques can suffer from
scalability issues (the path explosion problem). However, they allow
users to limit the explosion by setting a path depth bound, trading
completeness for practicality and scalability. Fortunately, the ma-
jority of errors in practical systems can be found using verification
to a reasonable bound [15].

The remainder of this paper is organized as follows. In Sec-
tion 2, we provide background on the specification and modeling
formalisms used in our solution, and introduce a running example.
In Section 3, we provide a detailed description of the individual
phases of our bounded verification approach. Section 4 evaluates
our approach by analyzing its applicability and performance in
a number of case studies. Finally, we overview related work in
Section 5, and conclude in Section 6.

2 Background
In this section, we first introduce an illustrative example. Then, we
describe the terms and notations we use to model a system, the ex-
ecution semantics of the models, and expressing system properties
using invariants.

2.1 An Illustrative Example
We use a simplified controller of a train system [16] to illustrate
important concepts throughout the paper. The system is composed
of five components: a train Controller (CTR), an Environment (ENV),
a train Sensor (SEN), a Door, and an Engine. We assume that users’
inputs are handled by ENV. The SEN component reads all sensors,
e.g., detecting if a passenger presses the emergency key. The CTR
component receives input from the SEN and ENV components,
and controls actuators for the Engine and Door. Component CTR
can receive input messages openDoorC, closeDoorC, moveTrainC,
stopTrainC, and emergency(pressed), where pressed is the message
payload of type Boolean that indicates whether the passenger has
pressed the emergency key. It also can produce output messages
openDoor, closeDoor, moveTrain, and stopTrain. In addition, CTR has
three Boolean variables emergency, trainMoving, and doorClosed
that encodes the train’s emergency status, whether the train is
presently in motion, and whether the door is closed.

The behaviour of component CTR is shown in Fig. 1 using SM
(Def. 4), where each transition is annotatedwith ‘trigger[guard]/actions’.
Note that the SM intentionally contains faults (red transitions) to
illustrate our approach. In this paper, we focus on two safety prop-
erties that the behaviour of component CTR must meet. (P1) The

door can not be closed when the emergency key is pressed. (P2) The
train can only move when the door is closed.

2.2 UML Profile for Real-Time Systems
(UML-RT)

UML-RT [12] is a language that specifically designed for Real-Time
Embedded (RTE) systems, with soft real-time constraints. Over
the past two decades, it has been used successfully in industry to
develop several large-scale industrial projects (e.g., [17]), and has a
long, successful track record of application and tool support, via, e.g.,
IBM RSA-RTE [18], and Papyrus-RT [19]. In this paper we use UML-
RT to evaluate and illustrate our approach. In the following, we
present a concise formalization of UML-RT which will be required
to understand our approach. A more detailed discussion of UML-RT
can be found in [12].

Definition 1. (Read function) Let 𝑡𝑝 be a tuple ⟨𝑟1 . . . 𝑟𝑛⟩ where
𝑟1 . . . 𝑟𝑛 refer to the names of the tuple entries. We use 𝑡𝑝.𝑟𝑖 to de-
note reading the value of entry 𝑟𝑖 . For example, we use person.name
to read the value of entry name of tuple 𝑝𝑒𝑟𝑠𝑜𝑛⟨name, family⟩.

Definition 2. (Model Structure of an RTE System)We model
a system as a set of communicating components. A component 𝑐 is
defined as a tuple ⟨𝐼 ,𝑂,𝑉 , 𝐵⟩, where 𝐼 denotes the input messages
that the component can receive, 𝑂 denotes the output messages
that the component can produce, 𝑉 is a set of variables of types
Integer and Boolean, and 𝐵 refers to the behaviour of the component,
which is defined using a UML-RT State Machine (USM) (Def. 4).

Definition 3. (Action Language)We assume the existence of an
action language that supports the primitive operations: (1) access-
ing/updating variables, (2) arithmetic/Boolean expressions, and (3)
sending messages. Since our work is focused at the model-level, we
assume a concise and simple action language without control flow
constructs such as while loop. Encoding other programming lan-
guages’ constructs as SMT formulas has been addressed extensively
in other work [20].

Definition 4. (UML-RT State Machine (USM))We specify the
behaviour of a component 𝑐 using a USM, defined as a tuple ⟨𝑆,𝑇 ,𝐶⟩.
𝑆 = 𝑆𝑏 ∪ 𝑆𝑐 ∪ 𝑆𝑝 is a set of states, 𝑇 is a set of transitions, and
𝐶 ⊆ 𝑆𝑐 × (𝑆∪𝑇) denotes an acyclic containment relationship. States
can be basic (𝑆𝑏), composite (𝑆𝑐), or pseudo-states (𝑆𝑝). Basic states
are primitive states that the execution stays in until an outgoing
transition is triggered. Composite states encapsulate a sub-state
machine. Pseudo-states are transient control-flow states. There are
six kinds of pseudo-states, including initial, choice-point, history,
junction-point, entry-point, and exit-point, (i.e., 𝑆𝑝 = 𝑆𝑖𝑛 ∪𝑆𝑐ℎ ∪𝑆ℎ ∪
𝑆 𝑗 ∪ 𝑆𝑒𝑛 ∪ 𝑆𝑒𝑥). Composite and basic states can have entry and exit
actions expressed using the action language.

Definition 5. (Transition) A transition 𝑡 is a 5-tuple (𝑠𝑟𝑐, 𝑔𝑢𝑎𝑟𝑑,
𝑡𝑟𝑖𝑔, 𝑎𝑐𝑡, 𝑑𝑒𝑠), where 𝑠𝑟𝑐, 𝑑𝑒𝑠 ∈ 𝑆 refer to non-empty source and
destination states of the transition respectively, 𝑔𝑢𝑎𝑟𝑑 is a logical
expression coded using the action language, 𝑡𝑟𝑖𝑔 is a set of messages
that trigger the transition, and 𝑎𝑐𝑡 is the transition’s action, also
expressed using the action language.

Definition 6. (Execution of a USM) We use a Labeled Transi-
tional System (LTS), consisting of a tuple ⟨Γ,A, 𝛾0, 𝐻, 𝑅⟩ to define

Bounded Verification of State Machine Models Conference’20, October 2020, Montreal, Canada

the execution semantics of a USM, where Γ is a set of configurations,
A is the set of actions (i.e., entry, exit, and transition actions defined
in the USM), 𝛾0 ∈ Γ is the initial configuration,𝐻 is a mapping func-
tion from composite states to their last visited sub-states (if any),
and 𝑅 is a transition relation (to avoid confusion with the syntax of
USMs, we use the term ‘execution step’ instead of ‘transition’ in the
rest of this paper). A configuration 𝛾 ∈ Γ is defined as a tuple ⟨𝜎, 𝐸⟩
where 𝜎 ∈ S refers to the execution state of the configuration, and
𝐸 contains values of the component variables at the configuration.

The execution of a USM begins at 𝛾0 where 𝛾0 .𝜎 is the initial
state of the USM, and 𝛾0 .𝐸 is created based on the default values
of the variables (Integer and Boolean variables, set to 0 and false
respectively). Execution continues if a new configuration exists that
has an execution step relationship with the current configuration.

Figure 2 defines four rules in the form of operational semantic
rules [21] that specify when two configurations, current configu-
ration, 𝛾 = ⟨𝜎, 𝐸⟩, and new configuration, 𝛾 ′ = ⟨𝜎 ′, 𝐸 ′⟩, have the
execution step relationship (i.e., (𝛾,𝛾 ′) ∈ 𝑅). The presentation of
the rules makes use of the definitions in Table 1. The rules are
defined based on the execution semantics of UML-RT described in
[12, 22]. Details of the rules are as follows:
Rule 1: This rule is applicable to configurations whose execution
state is one of the pseudo-states, except for history and choice-
point. According to Rule 1, an execution step is taken from 𝛾 to 𝛾 ′
((𝛾,𝛾 ′) ∈ 𝑅), if there is an outgoing transition from the execution
state of the current configuration (𝛾 .𝜎) that executes the related
actions and moves the execution to a new configuration (𝛾 ′).
Rule 2: This rule is applicable to configurations whose execution
state is a basic state. If a transition can be enabled (Table 1) from the
execution state of configuration 𝛾 , an execution step is taken from
𝛾 to 𝛾 ′ that executes the related actions and moves the execution
to a new configuration (𝛾 ′).
Rule 3: This rule is applicable to configurations whose current state
is a composite state (implicit history state). If function𝑛𝑒𝑥𝑡_𝑠 (𝜎,H)
(Table 1) returns a state, then an execution step is taken from 𝛾 to
𝛾 ′ that executes the related actions and moves the execution to a
new configuration (𝛾 ′).
Rule 4: This rule is applicable to configurations whose current state
is a choice-point. Guards of the outgoing transitions from the exe-
cution state of 𝛾 are evaluated, and the first transition whose guard
evaluates to true is selected. The result is an execution step from 𝛾

to 𝛾 ′ that executes the related actions and moves the execution to
a new configuration (𝛾 ′).

Definition 7. (System Execution and Run-to-Completion Se-
mantics) The execution of an RTE system can be defined as a collec-
tion of its components’ USM executions, which interact with each
other by passing messages. We do not describe the details of the
composition here, and we assume that the RTE system execution is
managed by a controller. The controller is responsible for schedul-
ing and message-passing between components, and guarantees that
an incoming message will be fully processed before the processing
of the next message begins (run-to-completion semantics).

Definition 8. (Execution Path) In the context of the execution of
a USM, an execution path 𝜋 with length n is defined as a sequence
of configurations 𝛾0𝛾1 ...𝛾𝑛 for 𝑛 ∈ 𝑁 , where ∀𝑖 < 𝑛, (𝛾𝑖 , 𝛾𝑖+1) ∈ 𝑅

𝜎 ∈ 𝑆𝑝 \ (𝑆ℎ ∪ 𝑆𝑐ℎ), 𝑡 = 𝑜𝑢𝑡_𝑡 (𝜎)(⟨𝜎, 𝐸⟩, ⟨𝑡 .𝑑𝑒𝑠, 𝐸 ′ = 𝑎𝑝𝑝𝑙𝑦 (𝐸, 𝑎𝑐𝑡𝑠 (𝜎, 𝑡))⟩) ∈ 𝑅 (1)

𝜎 ∈ 𝑆𝑏 , 𝑡 = 𝑒𝑛𝑎𝑏𝑙𝑒𝑑 (𝜎)(⟨𝜎, 𝐸⟩, ⟨𝑡 .𝑑𝑒𝑠, 𝐸 ′ = 𝑎𝑝𝑝𝑙𝑦 (𝐸, 𝑎𝑐𝑡𝑠 (𝜎, 𝑡))⟩) ∈ 𝑅 (2)
𝜎 ∈ 𝑆𝑐 , 𝑠 = 𝑛𝑒𝑥𝑡_𝑠 (𝜎, 𝐻)(

⟨𝜎, 𝐸⟩, ⟨𝑠, 𝐸 ′ = 𝑎𝑝𝑝𝑙𝑦 (𝐸, 𝑎𝑐𝑡𝑠 (𝜎, 𝑠))⟩
)
∈ 𝑅
(3)

𝜎 ∈ 𝑆𝑐ℎ, 𝑡 ∈ 𝑜𝑢𝑡_𝑡 (𝜎) ∧ 𝑒𝑣𝑎𝑙 (𝐸, 𝑡 .𝑔𝑢𝑎𝑟𝑑)(
⟨𝜎, 𝐸⟩, ⟨𝑡 .𝑑𝑒𝑠, 𝐸 ′ = 𝑎𝑝𝑝𝑙𝑦 (𝐸, 𝑎𝑐𝑡𝑠 (𝜎, 𝑡))⟩

)
∈ 𝑅
(4)

Figure 2: Membership rules of execution step relationship
of configurations 𝛾 = ⟨𝜎, 𝐸⟩ and 𝛾 ′ = ⟨𝜎 ′, 𝐸 ′⟩

Table 1: Helper functions

Function Description
out_t(𝑠) returns outgoing transitions from state 𝑠 .
parent(𝑠) returns the first-level container state of state 𝑠 .
parents(𝑠) returns all container states of state 𝑠 .
next_s(𝑠,H) (1) returns the last visited state in state 𝑠 from history

H, (2) if (1) is unsuccessful (i.e., the state is active for
the first time), returns the initial state inside 𝑠 , and
(3) if (1) and (2) are unsuccessful, returns ∅.

enabled(𝑠) checks state 𝑠 and its ancestors in bottom-up order,
and returns the first (i.e., most deeply nested) outgo-
ing transition, which can be triggered by the received
message. It returns ∅ if no transition can be triggered.

eval(𝐸,𝑔) evaluates guard 𝑔 based on the values in 𝐸 and re-
turns the result.

𝑚𝑠𝑔𝑣 (m) accepts a message𝑚 and returns a variable𝑚𝑠𝑔𝑣_𝑚.
payload(𝑚) accepts message𝑚 and returns its payloads.
apply(𝐸, 𝑎1 . . . 𝑎𝑛) executes a sequence of actions 𝑎1 . . . 𝑎𝑛 based on the

values in 𝐸 and returns the updated 𝐸.

and 𝛾0 is the initial configuration of the USM. The length of a path
is equal to the number of configurations in the path.

Definition 9. (Well-formedness of a USM) Following [12, 18,
19], we define the well-formedness constraints of a USM as follows:
(1) There are no AND-states (orthogonal regions), and no UML
fork, join, shallow history, or final states. (2) Any transition to a
composite state is assumed to end in an implicit history state inside
the composite state. (3) Triggers of transitions starting from the
same basic or composite state must be disjoint.

Definition 10. (SystemProperties) System properties (𝑆𝑖𝑛𝑣) cap-
ture the system’s required properties in the form of OCL-like in-
variants. 𝑆𝑖𝑛𝑣 denotes a set of invariants defined as quantifier-free
first-order logic formulas, all of which must hold during the en-
tire execution of the system. E.g., in the context of the illustrative
example, the safety properties P1 and P2 can be captured using:

Invariant P1 {emergency =⇒ ¬ closed} Invariant P2 {moving =⇒
closed}

Conference’20, October 2020, Montreal, Canada Nafiseh Kahani and James R. Cordy

Properties
(Invariants)

Path formulas

Exploration and encoding of
possible execution paths

StateMachine

Verification of
invariants

Instrumentation
 of path formulas

Verification
result

Instrumented
path formulas

Bound (N)

output input phase

Figure 3: Overview of our approach
3 Approach

Figure 3 presents an overview of our approach for bounded verifica-
tion of invariants of a system’s behavior. We assume as inputs the
behavior of the system in the form of a USM, a depth bound, and the
safety properties in the form of system invariants expressed in our
OCL-like notation (Def. 10). Table 1 lists a set of helper functions
that are used in the remainder of this paper. Our approach consists
of three phases, as follows.

Phase 1. Bounded exploration and encoding of execution
paths. This phase takes a USM and a depth bound as input, and
explores all possible execution paths of the USM, based on its exe-
cution semantics (Def. 6) until the given bound is reached. During
the exploration, each path is encoded as an SMT formula. By en-
coding the execution paths as SMT formulas, the execution of the
path is reduced to solving the path formula. Thus, we check the
satisfiability of the path formula to see whether or not the path is a
possible path (reachable) during execution. Unsatisfiable paths are
discarded during the exploration, since they are not reachable.

To encode a path, variables’ values in each configuration (𝐸) of
the path are encoded based on the variables’ values in its previous
configuration. To do that, the relevant actions are converted to
single static assignment (SSA) programs [23].

Phase 2. Instrumentation of path formulas. In addition to en-
coding the execution paths, this phase encodes the defined invari-
ants as SMT formulas, to allow their verification. To verify if an
invariant holds in an execution path 𝜋 , we first create a negation
of the invariant, and then instrument the path formulas to capture
the negation of the invariant in all configurations of 𝜋 . In this way,
the verification of the invariant is reduced to checking the (non-)
satisfiability of the instrumented path formulas.

Phase 3. Verification of invariants. Finally, to verify the invari-
ants, this phase checks the satisfiability of the instrumented path
formulas. Since the invariants are negated in Phase 2, satisfiability
of the instrumented formula of a path 𝜋 implies that the invari-
ant is violated in the path. In this case, based on the satisfiability
models (assignment of variables at each configuration of the execu-
tion path) and the execution path, a counterexample is provided.
Otherwise, if none of the instrumented formulas is satisfiable, we
conclude that the invariant holds to the given bound.

Algorithm 1: Bounded Exploration of Execution Paths
1 Input A component c = ⟨𝑖𝑛𝑝, 𝑜𝑢𝑡, 𝑣𝑎𝑟𝑠,𝑢𝑠𝑚⟩, a bound
2 Output A set of execution paths (𝑝𝑎𝑡ℎ𝑠)
3 Let 𝛾0 be the initial configuration of 𝑢𝑠𝑚 as

defined in Def. 6
4 Let ℎ be a map (from composite state to state)

that keeps history
5 Let 𝑝𝑎𝑡ℎ𝑠 be an empty set
6 Let 𝑒𝑛𝑐𝑜𝑑𝑒𝑑𝑃𝑎𝑡ℎ𝑠 be an empty set
7 explorePath(<𝛾0>,bound ,h)
8

9 Function explorePath(Sequence path , Integer bound
, Map h)

10 if (𝑏𝑜𝑢𝑛𝑑 =0)
11 return
12 Let 𝑓 be the encoding of 𝑝𝑎𝑡ℎ as an SMT formula
13 if (𝑓 is satisfiable)
14 Add a clone of 𝑝𝑎𝑡ℎ to 𝑝𝑎𝑡ℎ𝑠

15 add 𝑓 to 𝑒𝑛𝑐𝑜𝑑𝑒𝑑𝑃𝑎𝑡ℎ𝑠

16 else
17 return
18 Let 𝛾 denote the last element of 𝑝𝑎𝑡ℎ

19 if (𝛾 .𝜎 ∈ 𝑆𝑏)
20 for (𝑚𝑠𝑔 ∈ 𝑐.𝐼) # all input messages of 𝑐

21 if (enabled(𝛾 .𝜎,𝑚𝑠𝑔))
22 𝑡 =enabled(𝛾 .𝜎,𝑚𝑠𝑔)
23 ℎ[parent(𝑡 .𝑑𝑒𝑠)]=𝑡 .𝑑𝑒𝑠
24 append configuration ⟨𝑡 .𝑑𝑒𝑠, {}⟩ to 𝑝𝑎𝑡ℎ

25 else if (𝛾 .𝜎 ∈ 𝑆𝑖𝑛 ∪ 𝑆𝑒𝑥 ∪ 𝑆 𝑗 ∪ 𝑆𝑒𝑛 ∪ 𝑆𝑐ℎ)
26 Let 𝑡𝑟𝑎𝑛𝑠 be out_t(𝛾 .𝜎)
27 for (𝑡 ∈ 𝑡𝑟𝑎𝑛𝑠)
28 append configuration ⟨𝑡 .𝑑𝑒𝑠, {}⟩ to 𝑝𝑎𝑡ℎ

29 if (𝑝𝑎𝑡ℎ is satisfiable)
30 explorePath(𝑝𝑎𝑡ℎ,𝑏𝑜𝑢𝑛𝑑 − 1,ℎ)
31 else if (𝛾 .𝜎 ∈ 𝑆𝑐)
32 Let s be next_s(𝛾 .𝜎,ℎ)
33 append configuration ⟨𝑠, {}⟩ to 𝑝𝑎𝑡ℎ

34 explorePath(𝑝𝑎𝑡ℎ,𝑏𝑜𝑢𝑛𝑑 − 1, ℎ)

3.1 Bounded Exploration and Encoding of
Execution Paths

3.1.1 Bounded Exploration of Execution Paths. Algorithm 1 presents
our method for the exploration and encoding of possible execution
paths of a USM to a specific bound. It accepts a component 𝑐 and
a bound as input, and produces sets of possible execution paths
(𝑝𝑎𝑡ℎ𝑠) and their encoding as SMT formulas (𝑒𝑛𝑐𝑜𝑑𝑒𝑑𝑃𝑎𝑡ℎ𝑠). The

Bounded Verification of State Machine Models Conference’20, October 2020, Montreal, Canada

algorithm first creates the initial configuration of the component’s
USM and calls the recursive function 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑟𝑃𝑎𝑡ℎ that traverses
the USM’s states based on the execution semantics of the USM
(Def. 6) to populate the execution paths. Function 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑟𝑃𝑎𝑡ℎ

encodes the path as an SMT formula (Sec.3.1.2), and checks its
satisfiability. Upon unsatisfiability of the formula, or reaching the
bound, it terminates. Otherwise it branches based on the execution
state of the last configuration in the explored path, as follows:
Basic state: When the execution reaches a basic state 𝑠𝑏 (i.e., the
execution state of the last configuration is a basic state), it can
progress based on the received messages and outgoing transitions
of the execution state and its ancestors. Thus, to explore all possible
execution paths after the execution reaches 𝑠𝑏 , the function iterates
on all possible input messages of the component, and checks if
their reception can branch the execution. For all possible execu-
tion branches from 𝑠𝑏 , separate execution paths are saved whose
configurations are the same until reaching 𝑠𝑏 .

Pseudo state: When the execution reaches a pseudo state 𝑠𝑝 (i.e.,
the execution state of the last configuration is a pseudo state), it
can branch to any of the outgoing transitions from 𝑠𝑝 . Thus, the
function explores all outgoing transitions from 𝑠𝑝 and saves them as
separate execution paths whose configurations are the same until
reaching 𝑠𝑝 .

Composite state: As discussed above, any transition to a com-
posite state is assumed to be ended at a history state. Thus, the
execution treats a composite state as a history state. When the
execution reaches a history state 𝑠𝑐 , it can only progress on a single
path based on the value of the history. Thus, the function calculates
the next execution state (𝑠 = 𝑛𝑒𝑥𝑡_𝑠 (𝑠𝑐 , 𝐻)), and appends it to the
path with configuration ⟨𝑠, {}⟩.

Note that, the algorithm sets the variables’ values in the config-
uration to {}. The variables’ values will be calculated symbolically
as SMT formulas based on the relevant actions.

As an example, there are 7 execution paths with bound 5 (paths
with length 5 or smaller) in the context of the train controller’s
USM, and the following is an example path with bound 5.
⟨ ⟨𝑖𝑛1, {}⟩ ⟨𝐶1, {}⟩ ⟨𝑖𝑛2, {}⟩ ⟨𝑠1, {}⟩ ⟨𝑠2, {}⟩ ⟩

3.1.2 Encoding the Execution Paths as SMT Formulas. To capture
an execution path as an SMT formula (path formula), first the set of
variables is defined, based on which all configurations of the path
can be captured. Second, variables’ values in each configuration are
captured as a conjunction of equality checks in which each variable
value is formulated based on its value in the previous configuration.
In the following, we discuss the details of these three steps.

Definition of Variables. We assume that 𝑉 𝑐 is a set that con-
tains all the variables of component 𝑐 . The set of variables of the
path 𝜋 with length 𝑛 of component 𝑐 is then defined as:

𝑉 𝜋 ← 𝑉 𝑐
0...𝑛 ∪𝑉

𝑚𝑠𝑔

0...𝑛 ∪𝑉
𝑝𝑎𝑦

0...𝑛
where

𝑉 𝑐
0...𝑛 ←

⋃
∀ 𝑖∈0...𝑛

⋃
∀𝑣∈𝑉 𝑐

𝑣𝑖

includes all variables’ values in all configurations of the path, where
𝑖 denotes the identifier of each configuration in the path. Next,

𝑉
𝑚𝑠𝑔

0...𝑛 ←
⋃

∀ 𝑖∈0...𝑛

⋃
∀𝑚∈𝑐.𝐼∪𝑐.𝑂

𝑚𝑠𝑔𝑣 (𝑚)𝑖

Algorithm 2: Capture a Configuration as an SMT Formula
1 Input: Configuration 𝛾𝑖 , 𝛾𝑖−1, Sequence actions between 𝛾𝑖

and 𝛾𝑖−1, Component c
2 Output: a formula 𝑓

3 Let 𝑓 be a formula and set it to 𝑡𝑟𝑢𝑒

4 ssaactions ← Convert2SSA(actions , c)
5 for (v in variables of 𝑐)
6 Let 𝑣𝑖 refer to variable 𝑣 in configuration 𝛾𝑖
7 create an equality check statement 𝑒𝑞 and set its LHS to

𝑣𝑖
8 Set RHS of 𝑒𝑞 with calcV(v,ssaactions , 𝛾𝑖 , 𝛾𝑖−1)
9 Let 𝑓 be 𝑓 ∧ 𝑒𝑞
10 Append the 𝑓 based on the values of message variables

resulting from Convert2SSA
11
12 Function Convert2SSA(Sequence actions , Component c)
13 Let 𝑉 𝑐 refer to the variables of 𝑐

14 Let 𝑉𝑚𝑠𝑔 be the message variables of component 𝑐 (i.e.,⋃
𝑚∈𝑐.𝐼

𝑚𝑠𝑔𝑣 (𝑚)) that are set to 𝑓 𝑎𝑙𝑠𝑒

15 Let 𝑎𝑠𝑠𝑖𝑔𝑛𝐶𝑜𝑢𝑛𝑡𝑠 be a map from 𝑉 𝑐 to their assignment
count that is 0 at the beginning

16 for (𝑎𝑐𝑡 in actions)
17 if (𝑎𝑐𝑡 is assignment)
18 replace 𝑣 in LHS of act with an auxiliary variable

𝑣𝑎𝑠𝑠𝑖𝑔𝑛𝐶𝑜𝑢𝑛𝑡𝑠 [𝑣]+1
19 replace 𝑣 in RHS of act with an auxiliary variable

𝑣𝑎𝑠𝑠𝑖𝑔𝑛𝐶𝑜𝑢𝑛𝑡𝑠 [𝑣]
20 increase 𝑎𝑠𝑠𝑖𝑔𝑛𝐶𝑜𝑢𝑛𝑡𝑠 [𝑣] by one for v in LHS of act
21 else (𝑎𝑐𝑡 is send action)
22 Let 𝑚 be the messages which are sent by 𝑎𝑐𝑡

23 Set 𝑚𝑠𝑔𝑣 (𝑚) in 𝑉𝑚𝑠𝑔 to 𝑡𝑟𝑢𝑒

24 Set the payload of 𝑚 if 𝑎𝑛𝑦

25 return transformed actions
26 Function calcV(Variable 𝑣𝑙 , SSAActions acts ,

Configuration 𝛾𝑖 , 𝛾𝑖−1)
27 set 𝑣𝑙 from its value in 𝛾𝑖−1 (i.e., 𝑣𝑙 𝑖 = 𝑣𝑙 𝑖−1)
28 Let 𝑎𝑐𝑡 be the last assignment of 𝑣𝑙
29 for (𝑣𝑟 in RHS of act)
30 if (index of 𝑣𝑟 is larger than zero)
31 replace 𝑣𝑟 in 𝑎𝑐𝑡 with calcV(𝑣𝑟 ,𝑎𝑐𝑡𝑠,𝛾𝑖 , 𝛾𝑖−1)
32 replace the variables in 𝑅𝐻𝑆 with index zero with

variables from 𝛾𝑖−1
33 return the RHS of the updated act

consists of Boolean variables to capture reception of input messages
or generation of output messages at each configuration. Finally, we
have

𝑉
𝑝𝑎𝑦

0...𝑛 ←
⋃

∀ 𝑖∈0...𝑛

⋃
∀𝑚∈𝑐.𝐼 ∪𝑐.𝑂

𝑝𝑎𝑦𝑙𝑜𝑎𝑑 (𝑚)𝑖

which consists of variables to capture the payload of messages at
each configuration.

For example,𝑉 𝜋 , the variables of the path for a path with length
2, in the context of the running example, would be:

𝑉 𝑐
0 = {𝑡𝑟𝑎𝑖𝑛𝑀𝑜𝑣𝑖𝑛𝑔0, 𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦0, 𝑑𝑜𝑜𝑟𝐶𝑙𝑜𝑠𝑒𝑑0},

𝑉 𝑐
1 = {𝑡𝑟𝑎𝑖𝑛𝑀𝑜𝑣𝑖𝑛𝑔1, 𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦1, 𝑑𝑜𝑜𝑟𝐶𝑙𝑜𝑠𝑒𝑑1},

𝑉
𝑚𝑞𝑠

0 = {𝑚𝑠𝑔𝑣_𝑚𝑜𝑣𝑒𝑇𝑟𝑎𝑖𝑛𝐶0,𝑚𝑠𝑔𝑣_𝑜𝑝𝑒𝑛𝐷𝑜𝑜𝑟𝐶0, ...},
𝑉
𝑚𝑞𝑠

1 = {𝑚𝑠𝑔𝑣_𝑚𝑜𝑣𝑒𝑇𝑟𝑎𝑖𝑛𝐶1,𝑚𝑠𝑔𝑣_𝑜𝑝𝑒𝑛𝐷𝑜𝑜𝑟𝐶1, ...},
𝑉
𝑝𝑎𝑦

0 = {𝑝𝑟𝑒𝑠𝑠𝑒𝑑0}, 𝑉 𝑝𝑎𝑦

1 = {𝑝𝑟𝑒𝑠𝑠𝑒𝑑1}

Capture the ExecutionPath as an SMTFormula. Let 𝜋 be an
execution path 𝛾0, 𝛾1 . . . 𝛾𝑛 . To create a path formula for 𝜋 , first we
capture all of its configurations as formulas, and then create a path
formula, which is a conjunction consisting of formulas for all of its
configurations. To capture a configuration 𝛾𝑖 as a formula, first the
relevant actions between 𝛾𝑖 and its previous configuration 𝛾𝑖−1 are
transformed into static single assignment (SSA) form [23] in which

Conference’20, October 2020, Montreal, Canada Nafiseh Kahani and James R. Cordy

each variable is assigned only once. Second, we calculate the values
of each variable based on the values in the previous configuration.
Finally, we convert the assignments to equality checks, and create a
formula that is a conjunction of the equality checks of all variables.
The related guard is considered in conjunction with the formula.

Algorithm 2 presents the details of our method for capturing a
configuration as an SMT formula. It accepts a configuration (𝛾𝑖), the
prior configuration in the path (𝛾𝑖−1), the relevant actions, extracted
according to the definition of the execution step relationship (Fig-
ure 2), and a component 𝑐 . It calls the function 𝑐𝑜𝑛𝑣𝑒𝑟𝑡2𝑆𝑆𝐴 which
converts the actions to SSA form, then iterates on all variables of
the component, and calculates the variables values in configuration
𝛾𝑖 based on 𝛾𝑖−1. To do that, it calls 𝑐𝑎𝑙𝑐𝑉 which calculates the
variables values based on the last assignment of the variables, by
replacing all intermediate variables in the RHS (the right hand side
of the statement) with the initial variable (i.e., the variable with
index zero). Intuitively, the initial variables refer to the variables
values in the previous configuration. Thus, after calculations based
on the initial variables, they are replaced with variables of config-
uration 𝛾𝑖−1. The algorithm converts the assignments to equality
check expressions, and creates a formula that is the conjunction of
all equality checks. If a variable is not assigned by actions, its value
is set to the variable value from 𝛾𝑖−1, and the message and payload
variables are also set based on the results of function 𝑐𝑜𝑛𝑣𝑒𝑟𝑡2𝑆𝑆𝐴.

Transformation of Actions into SSA Form. Function con-
vert2SSA in Algorithm 2 accepts a sequence of actions and converts
it to SSA form. It first creates a map assignCounts from variables to
an integer that counts the number of assignments of each variable.
At the beginning, the count of assignments of each variable is set
to zero. The function then iterates over all actions, and replaces
the referenced variables by the actions with an auxiliary variable
created by subscripting the original variable. The subscript of each
auxiliary variable is set based on the number of assignments of
the variable prior to the current action, that is, (a) the index of the
variable 𝑣 in the LHS (the left hand side of the statement) is set
to 𝑎𝑠𝑠𝑖𝑔𝑛𝐶𝑜𝑢𝑛𝑡𝑠 [𝑣] + 1, and (b) the variable 𝑣 in the RHS is set to
𝑎𝑠𝑠𝑖𝑔𝑛𝐶𝑜𝑢𝑛𝑡𝑠 [𝑣]. The first step in Figure 4 is shown as an example
of how a sequence of actions is translated to SSA form. The function
also processes send message actions by setting the variables of the
relevant messages and their payload. This allows users to define
invariants related to message sending.

Figure 4 shows how a configuration 𝛾𝑖 with three variables 𝑥,𝑦, 𝑧
of a path 𝜋 is captured as a formula, assuming the left box of the
figure denotes the relevant actions between 𝛾𝑖−1 and 𝛾𝑖 .

3.2 Instrumentation of Path Formulas
As discussed, the invariants capture the system properties that
must hold during the entire execution of a component. To verify
whether an invariant holds for an execution path, we need to verify
that it holds in all of its configurations. In bounded verification
techniques, proof by contradiction is used rather than checking
and proving that the invariant holds in all possible situation. To
do that, a negation of the invariant is created, whose satisfiability
is checked with the help of the SMT solver. If the negation of the
invariant is satisfied, then the invariant is violated; otherwise, we
can conclude that the invariant holds until the defined bound of
the path is reached. To check the satisfiability of an invariant for an

execution path, each configuration of the path is instrumented (by
adding an assertion) based on the negation of the invariant. The
instrumenting of a configuration (e.g., 𝛾) is performed by replacing
the used variables in the invariant with the variables of 𝛾 .

According to the run-to-completion semantics, the execution of
a USM is not interrupted between moving from a configuration
whose execution state is a basic state and reaching another con-
figuration whose execution state is a basic state. Therefore, the
instrumentation of a configuration whose execution state is not a
basic state is unnecessary, and may cause spurious results for the
verification. To prevent that, the instrumentation is applied only in
configurations whose execution state is a basic state, as well as in
the initial configuration of the path.

3.3 Verification of Invariants
Generation of a Counter-Example. When the instrumented formula
of a path 𝜋 is satisfied, the assignments of variables relevant to
satisfying models, along with the path, provide enough informa-
tion to construct an instance of the execution path (a trace) that
violates the invariant. This is simply performed by iterating on all
configurations of the path, and setting its variables by reading them
from satisfying models. It is also possible to reconstruct the violat-
ing execution by execution of the actions along the path, which
require an interpreter or simulator. Our work presents the violating
execution based on the variables’ values from the satisfying model.

Verification of the USM’s Execution and Managing Bound. Our
previous discussion is mainly focused on the verification of an
invariant along a path. It is worth mentioning that to verify an
invariant in the context of the USM to a certain bound, the invari-
ant is checked against all possible paths to the specified bound.
In addition, when a bound 𝑛 is specified for the verification, the
verification process is started from bound 1 and is incrementally
applied to all bounds between 1..𝑛. This is helpful for the efficiency
of the verification and generation of violating execution paths with
minimum length, which are easier to understand.

Figure 5 shows an execution path of length 4 instrumented with
invariant P1 (Def. 10). Note that only configurations whose execu-
tions state are basic state are instrumented.

3.4 Limitations
Our current implementation of the approach has the following
limitations, all of which can be addressed in future work.

(1) We check UML-RT state machines in isolation. In UML-RT,
components can only communicate with each other by sending of
messages, and in our approach we consider all the possible input
messages of each component. Therefore, our approach does not
make any assumption concerning the behaviour of the relevant
components (compositions) and verifies the state machine for the
worst-case scenario. This can lead to counterexamples that are not
valid when the state machine is verified in composition with other
components. We leave handling composition to future work.

(2) Our approach only supports the encoding of loop and branch
free actions. The encoding of loop and branch statements has
been addressed extensively in the context of programming lan-
guages [15, 24], and importing it into our approach is left for future
work.

Bounded Verification of State Machine Models Conference’20, October 2020, Montreal, Canada

Figure 4: An example of encoding configurations 𝛾𝑖 and 𝛾𝑖−1, assuming that the leftmost box contains the relevant actions.

𝑑𝑜𝑜𝑟𝐶𝑙𝑜𝑠𝑒𝑑0 = 𝑓 𝑎𝑙𝑠𝑒

∧𝑡𝑟𝑎𝑖𝑛𝑀𝑜𝑣𝑖𝑛𝑔0 = 𝑓 𝑎𝑙𝑠𝑒

∧𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦0 = 𝑓 𝑎𝑙𝑠𝑒

∧¬(𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦0 =⇒ ¬𝑑𝑜𝑜𝑟𝐶𝑙𝑜𝑠𝑒𝑑0)

𝛾0, 𝛾0 .𝜎 = 𝑖𝑛1

𝑑𝑜𝑜𝑟𝐶𝑙𝑜𝑠𝑒𝑑1 = 𝑡𝑟𝑢𝑒

∧𝑡𝑟𝑎𝑖𝑛𝑀𝑜𝑣𝑖𝑛𝑔1 = 𝑓 𝑎𝑙𝑠𝑒

∧𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦1 = 𝑓 𝑎𝑙𝑠𝑒

𝛾1, 𝛾1 .𝜎 = 𝐶1

𝑑𝑜𝑜𝑟𝐶𝑙𝑜𝑠𝑒𝑑2 = 𝑑𝑜𝑜𝑟𝐶𝑙𝑜𝑠𝑒𝑑1

∧𝑡𝑟𝑎𝑖𝑛𝑀𝑜𝑣𝑖𝑛𝑔2 = 𝑡𝑟𝑎𝑖𝑛𝑀𝑜𝑣𝑖𝑛𝑔1

∧𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦2 = 𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦1

𝛾2, 𝛾2 .𝜎 = 𝑖𝑛2

𝑑𝑜𝑜𝑟𝐶𝑙𝑜𝑠𝑒𝑑3 = 𝑑𝑜𝑜𝑟𝐶𝑙𝑜𝑠𝑒𝑑2

∧𝑡𝑟𝑎𝑖𝑛𝑀𝑜𝑣𝑖𝑛𝑔3 = 𝑡𝑟𝑎𝑖𝑛𝑀𝑜𝑣𝑖𝑛𝑔2

∧𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦3 = 𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦2

∧¬(𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦3 =⇒ ¬𝑑𝑜𝑜𝑟𝐶𝑙𝑜𝑠𝑒𝑑3)
∧𝑚𝑠𝑔𝑣_𝑚𝑜𝑣𝑒𝑇𝑟𝑎𝑖𝑛𝐶3

𝛾3, 𝛾3 .𝜎 = 𝑠1

Figure 5: The instrumented path formula of path ⟨ ⟨𝑖𝑛1, {}⟩ ⟨𝐶1, {}⟩ ⟨𝑖𝑛2, {}⟩⟨𝑠1, {}⟩ ⟨𝑠3, {}⟩ ⟩
Note: Only the first four configurations are shown. Message variables with 𝑓 𝑎𝑙𝑠𝑒 value are emitted and the label above each box denotes the configuration id and its execution state.

4 Validation
We have created a prototype that embodies our approach. Our
prototype uses Z3 [6] as the SMT solver, the Epsilon Object Lan-
guage [25] to implement the exploration of execution paths, Xtext
[26] to capture and validate system properties, and the Eclipse Mod-
eling Framework (EMF) to handle execution paths. The prototype
is a command line tool which provides simple functionalities to
capture and verify system properties, and provides a counter exam-
ple when the given invariant is violated. The development of our
tool is still in progress. However, the core verification functionality
for USMs is already available.

We consider the following two research questions, to discuss the
applicability, performance, and scalability of our approach.

RQ1 (Applicability): Can our approach handle the verification
of practical behavioral models of RTE systems?

RQ2 (Performance and Scalability):What is the performance
and scalability of our approach?

4.1 Case Studies
To answer these questions, we used five case studies, including a
Car Door Central Lock system, a Parcel Router, a Rover, a FailOver
System, and a Debuggable FailOver system. As shown in Table 2,
these models have different complexities that range from simple
models with only 8 states to large models with up to 350 states.

The Car Door Central Lock system [27] is a control system
for locking and unlocking car doors. The Parcel Router [28, 29]
is an automatic system where tagged parcels are routed through
successive chutes and switchers to a corresponding bin. The system
is time-sensitive, and jams can appear due to variations in the
time required by a parcel to transit through the different chutes. It
checks for potential parcel jams, and prevents parcels from being
transferred from one chute to another until the next chute is empty.
The simplified version ignores jams.

The Rover system model [30] allows an autonomous robot to
move in different directions. The rover is equipped with three
wheels, driven by two engines. Additionally, it is equipped with
several sensors, such as temperature and humidity sensors.

The FailOver system [31, 32] is an implementation of a computer
server fail-over mechanism. It involves a set of servers processing
client requests. To provide high availability, the system supports
two replication modes, passive and active [33].

The Debuggable FailOver system is a debuggable version of the
FailOver system, which is generated using MDebugger [27]. The
complexity of this model is high, and allows us to check that the
refinement and analysis time do not skyrocket when the model size
grows exponentially.

4.2 Experiments
EXP1. Applicability. To answer RQ1, first we applied our proto-
type to the verification of the invariants of the running example of
this paper (Section 2.1) with bounds 5 and 15. We then configured
our prototype for the verification of "invariant T true" on the largest
USM (i.e., the SM with the largest number of states and transitions)
of the set of case studies listed in Table 2. Intuitively, invariant
T always holds, which implies that our prototype must check all
of the possible execution paths. This allows measurement of the
worst-case verification time for a certain bound. We ran this verifi-
cation with bounds 5 and 15, and recorded the number of explored
execution paths and the time required for exploration, encoding,
and checking the satisfiability of the paths, in each case.

To measure the effectiveness of the specified bounds, we mea-
sured the coverage of the explored paths as a percentage of the
USM’s states included at least once in an explored path. Coverage
gives us a good estimate of whether the specified bound is enough
to explore all of the possible behaviors of the USM.

Our current implementation does not yet support encoding of
loop and conditional statements in actions automatically. None of
the USMs in our case studies contains a loop. However, some of them
contained conditional statements (if-else), which we transformed
manually.

EXP2. Performance and Scalability. To answer RQ2, we have
configured our prototype for the verification of "invariant T true"
on our largest case study, the Debuggable FailOver. We ran the
verification with a sequence of bounds from 5 to 24, until all of the

Conference’20, October 2020, Montreal, Canada Nafiseh Kahani and James R. Cordy

Table 2: Model complexity of case studies, exploration/encoding of execution paths time, and worst case verification time of
an invariant

Model USM Size # of the paths Cov. (%). Exp. time (ms) Enc. time (ms) SAT. time (ms) Over. (Sec)
S T B-5 B-15 B-5 B-15 B-5 B-15 B-5 B-15 B-5 B-15 B-5 B-15

Car Door Central Lock 8 10 7 114 55% 100% 206 441 704 1002 282 3037 2 5
Parcel Router 14 25 22 16844 29% 100% 357 7,648 854 1279 757 310,492 2 320

Rover 16 21 8 182 62% 100% 310 2326 801 1254 294 4502 2 9
FailOver 31 43 10 6126 38% 100% 276 4500 716 1685 326 163,285 2 170

Debuggable FailOver 350 620 7 539 9% 70% 803 5147 600 4001 267 14050 2 24
S: State, T : Transition, B-5: Bound 5, B-15: Bound 15, Enc.: Encoding, Ver.: Verification, Exp.: Exploration, SAT.: Checking Satisfiability, Over.: Overall time, Cov.: Coverage

states of the system were covered in the explored paths. Similarly
to EXP1, we recorded the coverage, explored paths, and relevant
computation times for each bound.

Execution Environment. We used a 2.7 GHz Intel Core 𝑖5
computer with 8𝐺𝐵 of memory for all experiments, which is a
typical development PC rather than particularly powerful hardware.

4.3 Results

4.3.1 RQ1: Applicability Verification of the Invariants of the Run-
ning Example. The prototype successfully verified all of the invari-
ants of the running example with bounds 5 and 15. With bound 5, 7
execution paths (with length 5 or less) were explored, encoded, and
verified in less than two seconds. The verification results showed
that both invariants (P1 and P2) hold. However, with verification
bound 15, which took less than 7 seconds, 1,226 execution paths
were explored, and the results of the verification showed that both
invariants can be violated. Counter examples (shortest violating
execution paths) were generated, as follows. (The configurations
are shown based only on their execution states.)
P1 counter-example:

based on the configurations: ⟨𝑖𝑛1,𝐶1, 𝑖𝑛2, 𝑠1, 𝑠2, 𝑐ℎ1, 𝑒𝑛1, 𝑠2, 𝑠1⟩
P2 counter-example:

based on the configurations: ⟨𝑖𝑛1,𝐶1, 𝑖𝑛2, 𝑠1, 𝑠3, 𝑠2⟩

Updating the guard of the transition from state 𝑠2 to state 𝑠1 to
‘¬𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦’, and removing the transition between state 𝑠3 and
state 𝑠2 fixed both problems.

Results of the Verification on Case Studies.We have successfully
verified the USMs for all of the case studies. Table 2 summarizes the
complexity of the case studies, and the results of the verifications.
The size of the case studies ranges between 8 and 350 states. De-
buggable Failover has 350 states. The # of the paths column presents
the number of explored paths with bound 5 (paths with length 5
and smaller) and 15 (paths with length 15 and smaller) for each
case study. The Parcel Router and Car Door Central Lock have the
highest and lowest number of execution paths respectively. The
column Coverage shows the percentage of the USMs’ states that are
included in at least one of the paths. The exploration with bound
15 provides full coverage of all models except Debuggable Failover.
Columns Exp. time and Enc. time show the computing times for the
exploration, and encoding and instrumentation of the execution
paths respectively, and , and SAT. time the time for checking the
satisfiability of the paths.

Finally, the last column Overall Time shows the overall verifica-
tion times for each of the case studies with bounds 5 and 15, which
range between 5 and 320 seconds for bound 15. These times seem
acceptable since: (1) they account for the worst-case computation
time, by verifying "invariant T true", forcing the satisfiability of all
paths to be checked. (2) a large number of paths are explored with
bound 15, and almost all of the USMs’ states are covered.

Since the prototype can handle the verification of all of the case
studies, including one of size comparable to industrial models in
a reasonable time, we can safely conclude that the applicability of
our approach is acceptable. Moreover, our implementation is still a
prototype, and there remains the potential for improvement using
parallel verification and exploration of paths, since the verification
of each path is independent of the others.

4.3.2 RQ2: Scalability and Performance Figure 6 shows the cover-
age of explored execution paths (the left sub-figure), the number
of explored paths (the middle sub-figure), and the computation
time for exploration, encoding, and checking of the satisfiability
(SAT) for the paths of Debuggable Failover. Full coverage of states
is reached with bound 23, in which 54,516 paths of length 23 or less
are explored in 220 seconds (about 6 minutes). The overall verifica-
tion time with bound 23 is 1,483 seconds (about 25 minutes), 85%
(i.e., 21 minutes) of which is related to checking the satisfiability
of the paths (i.e., instrumented path formulas). Most of the rest of
the time is consumed in exploration, and the computing time for
encoding paths is negligible.

The right sub-figure of Fig. 6 shows the trend of computation
times for exploration, encoding, and SAT time of the paths as the
bound increases. As the bound increases, the number of explored
paths increases (middle sub-figure), and as a result, the exploration
and SAT time are also increased. The SAT time increases drasti-
cally at bound 21 (i.e., when about 1,000 paths are explored). This
suggests that even verification using SMT-Solvers does not en-
tirely mitigate scalability issues. However, it allows us to manage
and apply it up to a reasonable bound (e.g., until full coverage is
reached). Moreover, as mentioned, our implementation is still a
prototype, and there remains the potential for improvement using
parallel verification and exploration of paths. Exploration time also
increases after bound 21, but is still manageable and relatively small
compared to SAT time. Finally, the encoding time is constant and
negligible. This is due to the fact that actions are only transformed
to SSA form, and since the number of actions in a model is finite,

Bounded Verification of State Machine Models Conference’20, October 2020, Montreal, Canada

25

50

75

100

4 8 12 16 20 24
Bound

C
ov

er
ag

e
of

 s
ta

te
s

(%
)

0

25000

50000

75000

100000

4 8 12 16 20 24
Bound

of

 e
xp

lo
ar

ed
 e

xe
cu

tio
n

pa
th

s

0

500

1000

1500

2000

4 8 12 16 20 24
of paths

C
om

pu
tio

n
tim

e
(S

ec
on

ds
)

Encoding

Exploration

SAT

Figure 6: Coverage, number of explored paths, and verification time of Debuggable Failover with bounds 5..24
the encoding time does not increase after actions are transformed
the first time.

5 Related work

In this section, we focus on methods developed for verification of
UML behavioral models (e.g., SMs and statechart diagrams). We
review these methods based on the classification of Crane [34]:
mathematical models, and translation approaches.

Mathematical Models. These approaches use verification tech-
niques that rely on mathematical concepts and notations, such as
Petri Nets [35, 36], Transition Systems [34], Abstract StateMachines
(ASM) [37, 38], and Rewriting Systems [39, 40].

Using a mathematical notation encourages precision and at-
tention to detail, which makes it more likely to have complete
and unambiguous resulting semantics [34]. However, most of the
mathematically-based approaches do not provide a high level of
abstraction that can be easily understood by users [34, 39].

Translation Approaches These approaches perform verifica-
tion by translating a UML behavioral model into a formal language,
such as a specification language, or the input language of a model
checker (e.g., [41]).

Model Checking Languages. The aim is to reuse existing model
checkers, and to translate a model to the input language of a model
checker. However, the translation of a sufficiently large model is
complex and difficult to test, and the analysis results are not di-
rectly traceable back to the original model. There are several works
on UML behavioral model verification ([42, 43]) proposing transla-
tion to Promela. Latellat et al. [43, 44] proposed an approach that
translates the models into Promela code, and then verifies them
by the model checker SPIN. Beeck [45] extended Latellat’s work
by supporting more UML statechart features, such as the history
mechanism as well as entry and exit actions. Lilius and Paltor [42]
have proposed a tool, called vUML that uses the information con-
tained in the class diagrams, statecharts and collaboration diagrams
of a model to generate a Promela specification and then invokes the
SPIN model checker. Eshuis and Wieringa [46] proposed a verifica-
tion tool for UML activity diagrams, where an activity diagram is
translated into an input format for verifying by the model checker
SMV. Similarly, Knapp and Merz [47] exploit model checking to
verify the UML state machines. Beato et al. [48] translated models
specified using both UML state machines and activity diagrams to
the input language of SMV.

Specification Languages.Meng et al. [49] proposed a formaliza-
tion of the UML statechart diagrams based on the formal specifi-
cation language RSL (RAISE Specification Language), which is a
language for specifying and designing software systems. Kim et
al. [50] have formalized UML using OBJECT-Z. They encapsulate
the abstract syntax and the static and dynamic semantics for each
individual model constructed as a single Object-Z class.

The translation of the behavioural models into a formal language
is a popular approach. However, as discussed in Section 1, due to
the semantics mismatch between SMs and model checking lan-
guages, advanced features of SMs (such as hierarchical structure)
are not directly supported by model checkers. This complicates the
translation [5] that often is achieved by simplification and complex
transformations, verification of which is required to ensure that
the original intent of the SMs is preserved.

Methods applicable directly to the UML-RT language are less
common [12, 51–54]. Leue et al. [53] proposed a translation to
the AsmL language used in SpecExlorer. Posse and Dingel [12]
performed a translation to Kiltera, which is an extension of classical
process algebras.

SMT solvers have been used in the verification and analysis of
UML/OCLmodels. Soeken et al. [55] presented an approach to verify
the dynamic view of a UML class diagram including operations with
pre- and post-conditions. In another approach [56] an SMT-based
approach was proposed for model finding to increase confidence in
the correctness of a UML/OCL model. Clarisó et al. [57] proposed
an approach to aid in the bounded verification of UML/OCL models.
The approach operates by translating the UML/OCL model into a
constraint satisfaction problem. Dania and Clavel [58] proposed a
mapping from OCL to many-sorted first-order logic.

6 Conclusion

In this paper, we have proposed a novel technique for verifying
UML behavioral models as hierarchical state machines using SMT
solvers. We have described our approach in detail and analyzed its
applicability, performance, and scalability in a number of different
case studies. In contrast with existing work, our approach does not
require translation to other formalisms, and is not dependent on
program verification tools. Instead, it leverages bounded verification
and takes as input system properties specified as invariants that
are relatively easy to express. The results of the evaluation provide
evidence that our approach performs very well when verifying
models for finite-state systems.

Conference’20, October 2020, Montreal, Canada Nafiseh Kahani and James R. Cordy

References
[1] B. Selic, “Using UML for Modeling Complex Real-Time Systems,” in Languages,

Compilers, and Tools for Embedded Systems. Springer, 1998, pp. 250–260.
[2] B. Selic, “What will it take? a view on adoption of model-based methods in

practice,” Software & Systems Modeling, vol. 11, no. 4, pp. 513–526, 2012.
[3] G. J. Holzmann, “The model checker SPIN,” IEEE Trans. on software engineering,

vol. 23, no. 5, pp. 279–295, 1997.
[4] W. Visser, M. B. Dwyer, and M. Whalen, “The hidden models of model checking,”

Software & Systems Modeling, vol. 11, no. 4, pp. 541–555, 2012.
[5] K. Zurowska and J. Dingel, “Language-specific model checking of UML-RT mod-

els,” Software & Systems Modeling, vol. 16, no. 2, pp. 393–415, 2017.
[6] “Z3,” https://github.com/Z3Prover/z3, 2019, retrieved October 14, 2019.
[7] T. Ball and S. K. Rajamani, “The SLAM toolkit,” in International Conference on

Computer Aided Verification. Springer, 2001, pp. 260–264.
[8] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C programs,” in

International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 2004, pp. 168–176.

[9] S. J. A. T. Gulwani, Sumit and R. Venkatesan, “Synthesis of loop-free programs,”
in PLDI, 2011, pp. 62–73.

[10] B. Czipó, A. Hajdu, T. Tóth, and I. Majzik, “Exploiting hierarchy in the abstraction-
based verification of statecharts using SMT solvers,” FESCA ETAPS, pp. 31–45,
2017.

[11] L. Baresi, G. Blohm, D. S. Kolovos, N. Matragkas, A. Motta, R. F. Paige, A. Radjen-
ovic, and M. Rossi, “Formal verification and validation of embedded systems: the
UML-based MADES approach,” Software & Systems Modeling, vol. 14, no. 1, pp.
343–363, 2015.

[12] E. Posse and J. Dingel, “An executable formal semantics for UML-RT,” Software &
Systems Modeling, vol. 15, no. 1, pp. 179–217, 2016.

[13] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani, “Model checking and the
state explosion problem,” in LASER Summer School on Software Engineering, 2011,
pp. 1–30.

[14] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,” Com-
puters, IEEE Trans. on, vol. 100, no. 8, pp. 677–691, 1986.

[15] D. Kroening and M. Tautschnig, “CBMC-C bounded model checker,” in Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 2014, pp. 389–391.

[16] C. Damas, B. Lambeau, P. Dupont, and A. V. Lamsweerde, “Generating annotated
behavior models from end-user scenarios,” IEEE Trans. on Software Engineering,
vol. 31, no. 12, pp. 1056–1073, 2005.

[17] L. Dohmen and L. J. Somers, “Experiences and lessons learned using UML-RT
to develop embedded printer software,” in Product Focused Software Process Im-
provement. Springer Berlin Heidelberg, 2002, pp. 475–484.

[18] IBM, “IBM RSARTE,” https://www.ibm.com/developerworks/downloads-/r/
architect/index.html, 2019, retrieved October 14, 2019.

[19] Eclipse, “Eclipse Papyrus for Real Time (Papyrus-RT),” https://www.eclipse.org/
papyrus-rt, 2019, retrieved March 19, 2019.

[20] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C programs,”
in Tools and Algorithms for the Construction and Analysis of Systems, K. Jensen
and A. Podelski, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp.
168–176.

[21] G. D. Plotkin, “A structural approach to operational semantics,” 1981.
[22] M. von der Beeck, “A formal semantics of UML-RT,” in International Conference on

Model Driven Engineering Languages and Systems. Springer, 2006, pp. 768–782.
[23] B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Global value numbers and redun-

dant computations,” in Proceedings of the 15th ACM SIGPLAN-SIGACT symposium
on Principles of Programming Languages, 1988, pp. 12–27.

[24] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav, “Predicate abstraction of
ANSI-C programs using SAT,” Formal Methods in System Design, vol. 25, no. 2, pp.
105–127, Sep 2004.

[25] D. S. Kolovos, R. F. Paige, and F. A. Polack, “The Epsilon transformation language,”
in International Conference on Theory and Practice of Model Transformations.
Springer, 2008, pp. 46–60.

[26] Xtext, “Xtext,” http://www.eclipse.org/Xtext, 2019, retrieved October 14, 2019.
[27] M. Bagherzadeh, N. Hili, and J. Dingel, “Model-level, platform-independent de-

bugging in the context of the model-driven development of real-time systems,”
in 11th Joint Meeting on Foundations of Software Engineering, 2017, pp. 419–430.

[28] W. Swartout and R. Balzer, “On the inevitable intertwining of specification and
implementation,” Communications of the ACM, vol. 25, no. 7, pp. 438–440, 1982.

[29] J. Magee and J. Kramer, State Models and Java Programs. Wiley, 1999.
[30] M. Bagherzadeh, “Model-level debugging in the context of the model-driven

development,” Ph.D. dissertation, 2019.
[31] J. Balasubramanian, S. Tambe, C. Lu, A. Gokhale, C. Gill, and D. C. Schmidt,

“Adaptive failover for real-time middleware with passive replication,” in 15th IEEE
Symposium on Real-Time and Embedded Technology and Applications, 2009, pp.
118–127.

[32] N. Kahani, N. Hili, J. R. Cordy, and J. Dingel, “Evaluation of UML-RT and Papyrus-
RT for modelling self-adaptive systems,” in Proceedings of the 9th International

Workshop on Modelling in Software Engineering. IEEE Press, 2017, pp. 12–18.
[33] R. Guerraoui and A. Schiper, “Software-based replication for fault tolerance,”

Computer, vol. 30, no. 4, pp. 68–74, 1997.
[34] M. L. Crane and J. Dingel, “On the semantics of UML state machines: Catego-

rization and comparision,” in In Technical Report 2005-501, School of Computing,
Queen’s. Citeseer, 2005.

[35] J. Lian, Z. Hu, and S. M. Shatz, “Simulation-based analysis of UML statechart
diagrams: methods and case studies,” Software Quality Journal, vol. 16, no. 1, pp.
45–78, 2008.

[36] Y. Zhao, Y. Fan, X. Bai, Y. Wang, H. Cai, andW. Ding, “Towards formal verification
of UML diagrams based on graph transformation,” in IEEE International Conference
on E-Commerce Technology for Dynamic E-Business. IEEE, 2004, pp. 180–187.

[37] K. Compton, J. Huggins, and W. Shen, “A semantic model for the state machine
in the unified modeling language,” in Proceeding of Dynamic Behavior in UML
Models: Semantic Questions, 2000, p. 25–31.

[38] Y. Jin, R. Esser, and J. W. Janneck, “Describing the syntax and semantics of
UML statecharts in a heterogeneous modelling environment,” in International
Conference on Theory and Application of Diagrams. Springer, 2002, pp. 320–334.

[39] D. Varró, “A formal semantics of UML statecharts by model transition systems,” in
International Conference on Graph Transformation. Springer, 2002, pp. 378–392.

[40] J. Kong, K. Zhang, J. Dong, and D. Xu, “Specifying behavioral semantics of UML
diagrams through graph transformations,” Journal of Systems and Software, vol. 82,
no. 2, pp. 292–306, 2009.

[41] Z. Pap, I. Majzik, A. Pataricza, and A. Szegi, “Completeness and consistency anal-
ysis of UML statechart specifications,” in Proceedings IEEE Design and Diagnostics
of Electronic Circuits and Systems Workshop, 2001, pp. 83–90.

[42] J. Lilius and I. P. Paltor, “vUML: A tool for verifying UML models,” in 14th IEEE
International Conference on Automated Software Engineering, 1999, pp. 255–258.

[43] D. Latella, I. Majzik, and M. Massink, “Towards a formal operational semantics
of UML statechart diagrams,” in International Conference on Formal Methods for
Open Object-Based Distributed Systems. Springer, 1999, pp. 331–347.

[44] D. Latella, I. Majzik, and M. Massink, “Automatic verification of a behavioural
subset of UML statechart diagrams using the SPINmodel-checker,” Formal Aspects
of Computing, vol. 11, no. 6, pp. 637–664, 1999.

[45] M. von der Beeck, “A structured operational semantics for UML-statecharts,”
Software and Systems Modeling, vol. 1, no. 2, pp. 130–141, 2002.

[46] R. Eshuis and R. Wieringa, “Tool support for verifying UML activity diagrams,”
IEEE Trans. on Software Engineering, vol. 30, no. 7, pp. 437–447, 2004.

[47] A. Knapp and S. Merz, “Model checking and code generation for UML state
machines and collaborations,” Proceedings 5th Wsh. Tools for System Design and
Verification, pp. 59–64, 2002.

[48] M. E. Beato, M. Barrio-Solórzano, C. E. Cuesta, and P. de la Fuente, “UML au-
tomatic verification tool with formal methods,” Electronic Notes in Theoretical
Computer Science, vol. 127, no. 4, pp. 3–16, 2005.

[49] S. Meng, Z. Naixiao, and B. K. Aichernig, “The formal foundations in RSL for
UML statechart diagrams,” 2004.

[50] S.-K. Kim and D. Carrington, “A formal model of the UML metamodel: The UML
state machine and its integrity constraints,” in International Conference of B and
Z Users, 2002, pp. 497–516.

[51] K. Zurowska and J. Dingel, “Model checking of UML-RT models using lazy
composition,” in International Conference on Model Driven Engineering Languages
and Systems. Springer, 2013, pp. 304–319.

[52] M. Saaltink and I. Meisels, “Using SPIN to analyse RoseRT models,” Technical
Report, ORA Canada, Tech. Rep., 1999.

[53] S. Leue, A. Ştefănescu, and W. Wei, “An AsmL semantics for dynamic structures
and run time schedulability in UML-RT,” in International Conference on Objects,
Components, Models and Patterns. Springer, 2008, pp. 238–257.

[54] R. Ramos, A. Sampaio, and A. Mota, “A semantics for UML-RT active classes via
mapping into circus,” in International Conference on Formal Methods for Open
Object-Based Distributed Systems. Springer, 2005, pp. 99–114.

[55] M. Soeken, R.Wille, and R. Drechsler, “Verifying dynamic aspects of UMLmodels,”
in 2011 Design, Automation & Test in Europe, 2011, pp. 1–6.

[56] N. Przigoda, R. Wille, and R. Drechsler, “Ground setting properties for an efficient
translation of OCL in SMT-based model finding,” in Proceedings of the ACM/IEEE
19th International Conference on Model Driven Engineering Languages and Systems,
2016, pp. 261–271.

[57] R. Clarisó, C. A. González, and J. Cabot, “Smart bound selection for the verification
of UML/OCL class diagrams,” IEEE Trans. on Software Engineering, vol. 45, no. 4,
pp. 412–426, 2017.

[58] C. Dania andM. Clavel, “OCL2MSFOL: a mapping to many-sorted first-order logic
for efficiently checking the satisfiability of OCL constraints,” in Proceedings of the
ACM/IEEE 19th International Conference on Model Driven Engineering Languages
and Systems, 2016, pp. 65–75.

https://github.com/Z3Prover/z3
https://www.ibm.com/developerworks/downloads-/r/architect/index.html
https://www.ibm.com/developerworks/downloads-/r/architect/index.html
https://www.eclipse.org/papyrus-rt
https://www.eclipse.org/papyrus-rt
http://www.eclipse.org/Xtext

	Abstract
	1 Introduction
	2 Background
	2.1 An Illustrative Example
	2.2 UML Profile for Real-Time Systems (UML-RT)

	3 Approach
	3.1 Bounded Exploration and Encoding of Execution Paths
	3.2 Instrumentation of Path Formulas
	3.3 Verification of Invariants
	3.4 Limitations

	4 Validation
	4.1 Case Studies
	4.2 Experiments
	4.3 Results

	5 Related work
	6 Conclusion
	References

