
A Verification Framework for Access Control
in Dynamic Web Applications

Manar H. Alalfi James R. Cordy Thomas R. Dean
School of Computing, Queen’s University, Kingston, Canada

{alalfi, cordy, dean}@cs.queensu.ca

ABSTRACT
This paper proposes a security analysis framework for dy-
namic web applications. A reverse engineering process is
performed over a dynamic web application to extract a role-
based access control security model. A formal analysis is
applied on the recovered model to check access control secu-
rity properties. This framework can be used to verify that a
dynamic web application conforms to access control polices
specified by a security engineer.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—reverse engineering ; J.8 [Computer Ap-
plications]: Internet Applications

1. INTRODUCTION AND MOTIVATION
Current technologies such as anti-virus software programs

and network firewalls provide reasonably secure protection
at the host and network levels, but not at the application
level. When network and host-level entry points are compar-
atively secure, public interfaces of web applications become
the focus of attacks [26].

In this paper, we focus on one of most serious web appli-
cation vulnerabilities, broken access control. Access control,
sometimes called authorization, governs how web applica-
tions grant access to functions and content to some users and
not to others [1]. Depending on the access control model,
sets of users can be grouped into roles, where privileges are
assigned to roles rather than users. This kind of access con-
trol model facilitates the administration of user management
and is called a Role-Based Access Control model (RBAC)
[24].

Broken access control in web applications is considered
one of the top ten web application security vulnerabilities
[1]. Most web applications try to implement access control
polices using obscurity, where links to pages are not pre-
sented to unauthorized users. This method of protection is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
C3S2E-09 May 19-21, Montreal [QC, CANADA], Editor: B C. DESAI
Copyright 2009 ACM 978-1-60558-401-0/09/05 ...$5.00.

not sufficient because attackers can attempt to access hid-
den URLs, knowing that sensitive information and functions
lie behind these URLs. Attackers also try to access unau-
thorized objects and resources other than URL pages in an
indirect way, for instance, indirect access to back-end re-
sources such as databases.

The consequences of allowing unprotected flows to crafted
requests could be very destructive, especially when the web
application allows administrators to remotely manage users
and contents over the web. In such cases the attackers are
not only able to view unauthorized content, but also to take
over site administration.

Broken access control is usually caused by an unreliable
implementation of access control techniques. In many cur-
rent web applications, access control polices are spread over
the code, which makes the process of understanding and
maintaining such rules a difficult if not impossible task [1].
To protect against this attack, access control polices should
be based on a strong model that is implemented at all levels
of the web application, including both the presentation level
and the business level as well. Checking for authorization
should be done on every attempt to access secure informa-
tion, and access control mechanisms should be extensively
tested to ensure that there is no way to bypass them [1].

1.1 State of the Art
Many methods and tools have been proposed to check

for attack vulnerabilities in web applications such as SQL
injection and cross site scripting [16, 17], but none of them
attempts to detect broken access control attacks, either by
testing or by model checking. In our previous work [7, 8], we
found that many methods propose static models and tools
to check static properties of web applications, and some of
them try to model and check dynamic features, but none
of them is able to check or even model the access control
features of web applications.

In general there is little work [19, 9, 14, 3] on UML-based
security modeling. The focus of UMLsec [19] is on model-
ing security issues other than access control, such as data
confidentiality and integrity. Basin et al. propose Model
Driven Security (MDS) and its tool SecureUML [14] to in-
tegrate security models into system models. The authors
first specify a secure modeling language for modeling ac-
cess control requirements as a generalization for RBAC, af-
ter which, they embed this language within an extension of
UML Class diagrams. The authors of authUML [9] take a
step back and focus on analyzing access control requirements
before proceeding to the design modeling to ensure consis-

tent, conflict-free and complete requirements. The Ahn and
Hu method [3] differs from the above approaches in using
standard UML to represent the access control features of
the security model. They provide a policy validation based
on Object constraint Language (OCL) and Role-based Con-
straints Language 2000(RCL2000) [4], and then translate
the security model to enforcement code.

All of these are forward engineering approaches, while the
real need is for a reverse engineering approach that is not
only able to model access control polices, but also able to
check them in real applications. There is a critical need
for an approach that is able to test or model check web
applications to ensure that they are protected from broken
access control attacks, and this is the goal of our work.

2. RESEARCH APPROACH
Our proposed framework (Figure 1) is aimed at recovering

an RBAC security model from dynamic web applications.
Based on a formal version of this model, the framework can
be used to verify whether a dynamic web application con-
forms to the access control polices specified by a security
engineer, either with a correctness check, or with a counter-
example if an access control violation is encountered in the
code. The framework involves two main phases:

1. Staic and dynamic reverse engineering of the web ap-
plication structure and behavior.

2. Security model construction and analysis.

In the following subsections we will outline all of the frame-
work components and the flow of data between them.

2.1 Web Application Reverse Engineering
In the first phase, static and dynamic analysis of the dy-

namic web application is used to recover the basic elements
of an RBAC model [24]. We need to specify the set of users,
roles, resources and their hierarchies, as well as the relations
and access policies between them. Extracting static mod-
els such as class diagrams and behavioral models such as
sequence diagrams help us in this regard.

2.1.1 Static Analysis
The static analysis shown in Figure 1(B) extracts class

diagrams that help in identifying the set of users, roles, re-
sources and any relations between them. We have proposed
and implemented [6] an automated transformation from an
SQL (DDL) schema to an open XMI 2.1 UML-adapted class
model. The adapted model is a tailored UML class model
to represent the basic ER diagram components, including
entities, attributes, relations, and primary keys. Our trans-
formation technique is a novel one in that it is open, non-
vendor specific, and targeted at the standard UML 2.1 ex-
change format, XMI 2.1. Although comparable commercial
transformations exist, they are closed technologies targeted
at formats tightly coupled to the venderŠs tools, hindering
portability and preventing users from choosing their pre-
ferred tools in the development process. This analysis is
supported by a dynamic analysis that may refine the class
diagram, as well as recover behavioral models.

2.1.2 Dynamic Analysis
Static analysis is not adequate because it does not take

into account the runtime behavior of web applications. Dy-
namic analysis is required to perform a full security analysis,

including tracking user sessions, cookies, and user inputs.
To recover the implicit permissions from dynamic web ap-
plications, we have proposed and implemented an approach
and tool [5] to automatically instrument dynamic web appli-
cations using source transformation technology [13], and to
recover a sequence diagram from execution traces generated
by the resulting instrumentation, Figure 1(A).

Using an SQL database to store generated execution traces,
our approach automatically filters traces to reduce redun-
dant information that may complicate program understand-
ing. The elements in the sequence diagram are the interac-
tive user and browser session, the Application Server, and
the application pages and entities. The messages between
these elements represent page transitions and how they af-
fect the application entities, either with read or write op-
erations. While our current implementation supports all
versions of the PHP scripting language, the framework is
not tied to any particular language and can be extended in
plug-and-play fashion to other scripting languages.

Our proposed framework will address code coverage by
augmenting the dynamic analysis with instrumentation for
code coverage, combined with a mutation approach like that
of Bellettini et al. [10] for flow coverage. This will decrease
the percentage of false positives due to an analysis that re-
sults in a model that only partially covers the code (leading
to verifications of properties that may in fact not hold).

Even using code and flow coverage methods, enumerating
all execution paths is difficult. Ideally our framework should
be able to identify all execution paths, but in some cases the
human factor may be unavoidable, for instance when valid
or critical information is needed to for forms, user names or
passwords. Like web security scanning tools such as Veri-
Web [20] and AppScan [18], we may adopt a profile-based
solution which requires administrators to manually supply
valid values for form fields.

2.2 Model Construction and Analysis
In this phase a UML-based security model is constructed

based on the Basin et al. [14] security meta-model (Se-
cureUML). A transformation from this model to a state-
based formal analysis model is then performed to ease the
process of security analysis and verification.

2.2.1 RBAC-Model Construction
The core part of the proposed framework is the security

model. In order to be able to check the web application’s
access-control security properties, the framework must be
based on a strong security model, and be able to extract it
from the source code. We construct our security model us-
ing a Role-Based Access Control (RBAC) approach, Figure
1(C). Since users are not assigned permissions directly, but
rather acquire them through their role (or roles), manage-
ment of individual user rights is simplified. In a role-based
model, permissions for common operations such as adding a
user or changing a user’s department become obvious.

Our RBAC model is constructed by binding the recov-
ered application ER model [6] with the recovered dynamic
behavioral model (sequence diagram). The recovered se-
quence diagram is generated based on execution traces col-
lected from the dynamic analysis part of our framework [5].
Web crawling tools that mimic user interactions with web
applications, such as clicking links, filling in forms and press-
ing buttons [15, 25] are used to automate collecting traces,

A B C D

Behavioral Model Reverse-
Engineering

Structural Model Reverse-
Engineering

Security Model
Construction

Model Transformation
and Formal Verification

PHP TXL
Grammar

TXL
Transform-
aion Rules

PHP
Documents

MySql TXL y q
Grammar

TXL
Transform-
aion Rules

Database
schema

XMI SecureUML
Model

Static Analysis Instrumentation

Source
Transformation Identification of

Users, Roles,
Resources

XMI to Formal
Model

transformation

Access

Instrumented
PHP documents

Mutant
Operators

Static
Information

Model
Checker

control
properties

Class
Diagram

Sequence
Diagram

Correct Counter
E l

Random
User
Input

Mutant
Instrumented

PHP documents

Execution
Traces Dynamic

Information

Example

Figure 1: The Proposed Framework

while the application roles themselves are recovered manu-
ally by studying the software documentation. Roles can be
identified from the HTTP session variable and by recover-
ing the way the web application classifies users into roles.
(Complete automation of this part is currently a work in
progress). The generated sequence diagrams are combined
into one single sequence diagram for the entire application
in XMI 2.1 format, which is then combined with the applica-
tion XMI 2.1 form of the ER model recovered by the static
analysis part of our framework [6], using Model Driven Se-
curity (MDS) [14] to automatically generate a SecureUML
model for the web application.

2.2.2 Model Transformation and Formal Verification
Once the SecureUML model is constructed, we need to an-

alyze it against the security properties (Figure 1(D)). While
UML models provide good support for verifying web appli-
cation requirements, they need to be converted into a formal
state model in order to be automatically checked [7, 8]. Sev-

eral methods in the literature propose tools for the transla-
tion from UML diagrams to formal state models that can be
checked using existing formal verification tools. Examples
are UML2Alloy [11] and XMI2SMV [12].

We convert our SecureUML model to a formal state model
using a similar conversion process. The formal model along
with the desired security properties is fed to a formal veri-
fication tool such as Alloy, yielding either confirmation that
the properties hold, or a counter-example. When a counter-
example is generated, the problem is mapped back to the
code at the function point level by tracing back to the vi-
olated dynamic page. In some cases it may be possible to
go deeper, for example using the parameters provided in the
URL to identify the block of code causing the violation.

3. EVALUATION AND PRELIMINARY RE-
SULTS

Our approach will be validated on a number of different

web applications. Good candidate systems to assess our ap-
proach are web applications that are open source, and built
using the combination of Apache server, PHP, and MySQL.
The proposed framework will be applicable to other tech-
nologies as well, simply by adding their grammars to the
static analysis and instrumentation stages. The most im-
portant requirement is that the web application should have
some kind of permission system.

Because our approach is based on static and dynamic
analysis, we require source code. Our choice of the combina-
tion of PHP, MySQL, and Apache server is based on the pop-
ularity of these technologies. According to (Netcraft)[21],
Apache web server is the most deployed web server on the
internet with a 58.7% market share. PHP has been the most
popular server-side scripting language for years and is likely
to remain so for some time. As of April 2007, there were
more than 20 million websites (domain names) using PHP
[22]. MySQL as well is the fastest-growing database in the
industry, with more than 10 million active installations and
50,000 daily downloads [2]. The approach could be applied
to other technologies as well.

In our first experiment, we are applying the proposed ap-
proach to the PhpBB [23] web application . PhpBB is the
world’s leading open source forum software. It has a pow-
erful permission system and a number of other key features
such as private messaging, search functions, a customizable
template and language system, and support for multiple
database technologies.

So far we have evaluated our prototype tools, SQL2XMI
[6] and PHP2XMI [5], on PhpBB 2.0. SQL2XMI is able
to automatically reverse engineer an ER class model from
the PhpBB source, and PHP2XMI is able to automatically
reverse engineer two kinds of sequence diagrams form Ph-
pBB, one that represents the basic page transitions for each
role, and a more detailed version that shows the effect of
each page transition on the application entities recovered by
SQL2XMI based on dynamic read and write operations.

4. CONCLUSION
The proposed approach is a novel one in web application

security verification. Besides being the first approach to
tackle the issue of access control verification, the proposed
framework is flexible enough to allow for different server side
technologies and databases in plug and play fashion.

Our approach also yields the potential for application in
systems other than web applications. The static and dy-
namic reverse-engineering front-end of the framework can
be reused for other kinds of analysis, and the framework
could be used to discover other kinds of security attacks,
such as cross-site scripting and SQL injection.

In our first experiment, the framework is being evaluated
on one of the most popular PHP web applications, PhpBB,
to check that the application is free from any remaining
access control vulnerabilities.

5. REFERENCES
[1] The Top Ten Most Critical Web Application Security

Vulnerabilities,
http://www.owasp.org/documentation/topten, last
access June 27, 2007.

[2] MySQL AB, MySQL Market Share
http://www.mysql.com/why-mysql/marketshare/, last
access Nov 26, 2008.

[3] Gail-Joon Ahn and Hongxin Hu. Towards realizing a
formal RBAC model in real systems. In SACMAT
2007, 12th ACM Symposium on Access Control Models
and Technologies, Sophia Antipolis, France, June
20-22, 2007, pages 215–224.

[4] Gail-Joon Ahn and Ravi S. Sandhu. Role-based
authorization constraints specification. ACM Trans.
Inf. Syst. Secur., 3(4):207–226, 2000.

[5] Manar H. Alalfi, James R. Cordy, and Thomas R.
Dean. ”Automated Reverse Engineering of UML
Sequence Diagrams for Dynamic Web Applications”.
In WebTest 2009, 1st International Workshop on Web
Testing, Denver,Denver, Colorado - USA April 4,
2009(in press).

[6] Manar H. Alalfi, James R. Cordy, and Thomas R.
Dean. SQL2XMI: Reverse Engineering of UML-ER
Diagrams from Relational Database Schemas. In
WCRE 2008, the 15th Working Conference on
Reverse Engineering, Antwerp, Belgium, October
15-18, pages 187–191.

[7] Manar H. Alalfi, James R. Cordy, and Thomas R.
Dean. A Survey of Analysis Models and Methods in
Website Verification and Testing. In ICWE 2007, 7th
International Conference on Web Engineering, Como,
Italy, pages 306–311, 2007.

[8] Manar H. Alalfi, James R. Cordy, and Thomas R.
Dean. Modeling methods for web application
verification and testing: State of the art. Softw. Test.,
Verif. Reliab., 2008 (in press).

[9] Khaled Alghathbar and Duminda Wijesekera.
authUML: a three-phased framework to analyze access
control specifications in use cases. In FMSE 2003,
ACM workshop on Formal methods in security
engineering, FMSE 2003, Washington, DC, USA,
October 30, pages 77–86.

[10] Carlo Bellettini, Alessandro Marchetto, and Andrea
Trentini. WebUml: reverse engineering of web
applications. In SAC 2004, ACM Symposium on
Applied Computing, Nicosia, Cyprus, March 14-17,
2004, pages 1662–1669.

[11] Behzad Bordbar and Kyriakos Anastasakis. MDA and
Analysis of Web Applications. In TEAA(2005),
Trends in Enterprise Application Architecture, VLDB
Workshop, Trondheim, Norway,, volume 3888 of
LNCS, pages 44–55. Springer.

[12] Daniela Castelluccia, Marina Mongiello, Michele Ruta,
and Rodolfo Totaro. WAVer: A Model Checking-based
Tool to Verify Web Application Design. Electr. Notes
Theor. Comput. Sci., 157(1):61–76, 2006.

[13] James R. Cordy. The TXL source transformation
language. Sci. Comput. Program., 61(3):190–210, 2006.

[14] D.Basin, J.Doser, and T. Lodderstedt. Model driven
security: from UML models to access control
infrastructures. ACM Trans. Softw. Eng. Methodol.,
15(1):39–91, 01 2006.

[15] Canoo Engineering. Canoo WebTest,
http://webtest.canoo.com.

[16] Yao-Wen Huang, Chung-Hung Tsai, Tsung-Po Lin,
Shih-Kun Huang, D. T. Lee, and S. Y Kuo. A testing
framework for Web application security assessment.
Computer Networks, 48(5):739–761, 08 2005.

[17] Yao-Wen Huang, Fang Yu, Christian Hang,

Chung-Hung Tsai, Der-Tsai Lee, and Sy-Yen Kuo.
Securing web application code by static analysis and
runtime protection. In the 13th international
conference on World Wide Web, WWW 2004, New
York, NY, USA, May 17-20, pages 40–52, 2004.

[18] Sanctum Inc. Web Application Security Testing,
AppScan 3.5., http://www.sanctuminc.com, last
access September 5, 2007.

[19] Daniel Jackson. Software Abstractions: Logic,
Language, and Analysis. MIT Press. Cambridge, MA.,
March 2006.

[20] B. Michael, F. Juliana, and G. Patrice. Veriweb:
automatically testing dynamic web sites. In WWW
2002, the International World Wide Web Conferences,
Honulolu.

[21] Netcraft Ltd. November 2008 web server survey,
http://news.netcraft.com/archives/2008/11/19/november
2008 web server survey.html, last access Nov 26,

2008.

[22] PHP Group. PHP usage Stats for April 2007,
http://www.php.net/usage.php, last access June 27,
2007.

[23] phpBB Group. PhpBB, http://www.phpbb.com/, last
access June 27, 2007.

[24] R. S.Sandhu, E. J.Coyne, H. L.Feinstein, and
C. E.Youman. Role-based access control models.
Computer, 29(2):38, February 1996.

[25] WatirCraft. WATIR, http://wtr.rubyforge.org.

[26] Adrian Wiesmann, Andrew van der Stock, and Mark.
A Guide to Building Secure Web Applications and
Web Services. Open Web Application Security
Project, OWASP, 2005.

