A Modeling and Static Analysis Approach for the
Verification of Privacy and Safety Properties in
Kotlin Android Apps

1%t Bara’ Nazzal
School of Computing
Queen’s University
Kingston, Canada
21bn7@queensu.ca

Abstract—The safety and privacy of medical devices is critical,
as they directly affect the health of users and handle sensitive
personal data. Ensuring that these devices meet safety and
security standards is essential, especially with the rise of do-it-
yourself solutions such as open-source artificial pancreas systems
(APSs) for insulin delivery. In this work, we study AndroidAPS,
an APS controller written in Kotlin, and propose an approach
to detect safety and security issues. We develop a modeling
and analysis framework for Kotlin applications that extracts a
structural model and supports detecting logging vulnerabilities
and ensuring the application of safety constraints. We conduct
two experiments. The first examines logging behavior to check for
privacy risks. Out of 3,059 logging instances, our tool identified
48 sinks that received 144 sensitive flows, with 68 % precision due
to coarse-grained flagging. The second experiment verifies that
calculation-related values are validated against safety constraints
before being set to the profile. We show that AndroidAPS
generally adheres to its safety design properties, but it has one
calculation-related value that is not explicitly validated at the
plugin level and only partially validated earlier in the flow.

Index Terms—Software, Privacy, Static analysis, Modeling

I. INTRODUCTION

Ensuring the safety and privacy of medical device users is
critically important due to the nature of these devices. They
can directly impact the user’s health and life, and they handle
sensitive data that users expect to be treated with trust and
confidentiality. An example of such a device is an artificial
pancreas system (APS).

APS represent life-critical medical devices that are both
widespread and readily accessible. These systems have been
the subject of previous research and benefit from active, pub-
licly available open-source software projects for the controller
software component, making them a strong candidate for
further investigation.

Software modeling techniques provide the ability to analyze
and explore software states to ensure the establishment and
preservation of safety and security properties as shown by
Freitas et al. [8]. Previous APS research has generally con-
centrated on creating models for generic, theoretical devices
and ensuring that these models satisfy safety and security re-
quirements, this is shown in recent surveys by Silvia Bonfanti

2" Manar H. Alalfi
Department of Computer Science
Toronto Metropolitan University
Toronto, Canada
manar.alalfi @torontomu.ca

3 James R. Cordy

School of Computing
Queen’s University
Kingston, Canada
cordy @queensu.ca

[3] and Nazzal et al. [17]. By contrast, we propose applying
modeling techniques to existing, practical, open-source APS
software by using model extraction and analysis techniques to
validate and verify real-world software. In this paper, we aim
to explore the following research questions:

¢« RQ1: Can a model suitable for verifying privacy and
safety properties be automatically extracted from the
source code of a production open-source APS applica-
tion?

o RQ2: To what extent do current open-source APS appli-
cations adhere to established safety and privacy proper-
ties?

Our contributions are as follows:

o The design and implementation of an analysis framework
for the verification of safety and security properties in
Kotlin applications. It works by modeling the structural
relationship from the code, which enables the analysis of
its behavior using static analysis techniques.

o An empirical evaluation of AndroidAPS, a widely used
open-source artificial pancreas system, focusing on its
security with respect to privacy, and safety. We make sure
that AndroidAPS avoids sensitive information leakage
through logging vulnerabilities and we validate its safety
by ensuring that it checks and applies safety constraints
to values related to user profiles and insulin calculations.

II. BACKGROUND
A. Medical Devices and AndroidAPS

Our research targets medical devices, which are safety-
critical systems due to their direct impact on users’ health
and their handling of sensitive personal data.

These devices require certification to meet safety standards.
This is increasingly needed with the rise of do-it-yourself
(DIY) solutions, such as open-source artificial pancreas sys-
tems (APSs), which may bypass official certification. This
highlights the importance of studying their safety and security.

APSs consist of a continuous glucose monitor (CGM), a
controller, and an insulin pump. The controller either advises

the user or automatically delivers insulin. Notable open-source
APSs include OpenAPS [18], AndroidAPS [1], and Loop [14].

This paper takes AndroidAPS as a case study, which is an
Android app users build and install themselves. It is written
mainly in Kotlin with around 157,000 lines of code. We used
version 3.1.0 for our tests.

According to OpenAPS documentation [19] and Toffanin
et al. [23], the controller regularly reads CGM data, queries
the pump, and uses user inputs, such as carb intake and
insulin sensitivity, to compute insulin on board (IOB) and
carbohydrate impact. Based on this, it calculates basal and
bolus insulin doses using different algorithms. AndroidAPS
includes algorithms like Advanced Meal Assist (AMA) and
SuperMicroBolus (SMB), described in AndroidAPS’ docu-
mentation [2]. AMA accelerates temporary basal rates adjust-
ment after meals, while SMB delivers smaller, rapid boluses,
rather than adjusting basal rates, for faster insulin action and
supports various configurations.

B. Software Modeling

Source code can be represented in different ways to facilitate
analysis. Prior literature often uses formal methods [3], which
apply mathematical techniques for software verification. This
typically involves abstracting the software into a mathemati-
cally verifiable model, such as program states, logic, or events,
and then verifying that the model adheres to the required
specifications. This process can be used to ensure program
correctness and compliance with security requirements. It
also supports program simulation, aiding in debugging and
detecting security flaws.

In our research, we design a custom framework for mod-
eling and analysis. We use a modeling approach based on
structural relationship between source code entities. In this
approach, the model closely mirrors the source code and can
be automatically extracted.

III. METHODOLOGY

Our framework is based on modeling the source code
and applying static analysis techniques. The first step in our
approach is to provide a model for Kotlin code. This will serve
as the basis for our tool and analysis. The model we provide
is based on the structural relationships between Kotlin entities.
The main entities in Kotlin code that we are interested in are
the following: Files, Packages, Classes, Objects, Interfaces,
Functions, Variables, Values, and Properties. In our model, we
track the structural relationships between these entities within
the code. The relationship schema is explained in more detail
in Table 1.

As an example, a source code is provided in Listing 1. The
code is a simple Kotlin program contained in a single file, File
1, which imports a package from File 2, defines one class,
declares a property A, and implements the function test. The
function declares a value constant and variables x and y, which
are passed as parameters to the function sum, which is called
in the assignment to variable z.

TABLE I
MODEL RELATIONSHIP
Relationship Entity 1 Entity 2 Meaning
Contains: File Class Kotlin source file may
- Entityl Object contain the following
- Entity2 Interface components
Functions
Associate: Package File Associate package
- Entityl with file and its
- Entity2 contents
Imports: File Package Imports make other
- Entityl packages accessible in
- Entity2 the current package.
Declared with the
syntax import
Declares: Class Class Entity 1 introduces
- Entityl Object Object Entity 2. Entity 2
- Entity2 Interface Interface specification is op-
Function Function, tional
Variable
Value
Property
Implements: Class Class Entity 1 provides En-
- Entityl Object Object tity 2’s specification
- Entity2 Interface Interface and initialization
Function Function
AssignedTo: Variables Variables Tracks variable
- Entityl Values Values through assignment
- Entity2 Properties Properties statements
Calls: Functions Function Tracks function calls
- Entity1 Variables in assignment state-
- Entity2 Values ments to variables or
Properties function calls within
other functions
Passed: Variables Function Variables are passed
- Entityl Values as parameters into a
- Entity2 Properties function
Returns: Function Variables Functions can return
- Entityl Values values
- Entity2 Properties
CreatesInstance: Class Class A statement creates an
- Entityl Object Object instance of a class
- Entity2 Interface
Function,
Variables
Values
Properties

The resulting model is represented in Graphical Modeling
Language (GML) [9] in our tool, and a graph representation
of the resulting model is shown in Figure 1.

Based on the above, we can generate an entity-relationship
model between the different components in Kotlin. For exam-
ple, each file imports packages and contains a class or an
object. Each class has functions and may include property
declarations. Each function contains statements that declare
variables, assign values to them, or modify them, and may
include calls to other functions or constructions of objects.

While we can easily map the top-level relationships, cre-
ating a full mapping of all relationships can be challenging
due to the size of the application and the lack of a clear
entry point. To address this, we utilize concepts from program
analysis, specifically static analysis, as will be demonstrated

O 001N B W=

Listine 1. Examnole of Kotlin Code
!Start Filename "Filel.kt"

import org.package2
package org.packagel
class Filel {
var A
fun test(){
val constant =5
var x = 3
var y = X
var z = sum(y, constant)
}

'End Filename "Filel.kt"

Package:
org.package1

Associate

File: File1_0

Contains Imports

Package:
org.package2

Class: File1_1 |

Declares
Implements ~ Declares

Function: test | Property: A |

Declares” Declares Declares

Assigns to

Declares

[Value: constant|

| Variable: z | Variable: y

Calls Passed to

Function: sum

Fig. 1. Graph Representation of the Kotlin Model
in the following section.

A. Static Analysis

Program analysis can be done either statically, without
executing the source code, or dynamically, during runtime.
Static analysis requires access to the source code but has
the advantage of providing more coverage and enables us to
examine the structure of the code.

We use TXL [7], a source transformation language, to
implement our framework. We use it to perform sink-source-
based backward slicing of the Kotlin application. In this
context, sources refer to potentially sensitive data, while sinks
represent code locations where this data might be exposed.
If there is a flow from the source to the sink that is not
properly safeguarded, the flow is considered tainted. We used
this concept to develop a TXL-based tool for analyzing Kotlin
app source code to detect potential tainted flows.

Our TXL program consists of two main components respon-
sible for abstract syntax tree generation and flow detection:
Grammar and Transformation Rules.

The tool takes a Kotlin source code file as input and
outputs the relevant parts of the code that contain identified
data flows. We developed our own by referencing the Kotlin

syntax documentation [10]. The grammar, similar to a context-
free grammar, defines the language components, ranging from
non-terminal annotations, headers, and imports to statements
and terminal components. Accurate grammar is essential for
precise analysis, as it governs the relationships between these
components. Our grammar was validated on a large Kotlin
dataset and is designed to be flexible, allowing for adaptation
to other static analysis tasks. This grammar enables precise
parsing and analysis of Kotlin code, forming the foundation
of the analysis capabilities.

After merging the Kotlin files in the project, the resulting
merged file is input to TXL and is processed by it. Using
the provided grammar, the tool parses the input text according
to Kotlin’s reference syntax. If parsing fails at this stage, the
process terminates and returns an error.

If parsing is successful, the TXL transformation rules
perform the following tasks: Sink identification, where the
source code is parsed and functions that correspond to the
specified sink are marked. Local backward tracing, where
lines containing variables that influence the sink are identified,
such as parameters or assignments. Global tracing, where
the rest of the application is scanned for invocations of the
function containing the sink, as well as any other functions
involved in the flow. This process is recursively repeated until
all code segments that impact the relevant sink are identified.
Custom rules, code cleanup, and vulnerability reporting,
where custom rules are enforced, such as ignoring flows that
are encrypted or otherwise mitigated; otherwise, the flow is
retained. Finally, the tool performs a cleanup step by removing
code sections that are not marked as relevant to the flow toward
the sink.

This approach provides the flexibility to test for different
properties and to add custom rules. For example, we can check
for propagator functions within the flow and exclude flows that
do not contain them. We can also check for functions which
mitigate the vulnerability, and if they are present, the flow is
marked as benign; if not, it is marked as potentially leaking
sensitive data.

For instance, to detect leakage of sensitive data through
a sink, we implement a main rule that identifies the sink
calls across the codebase. A second custom rule then filters
these calls to check whether they include sensitive variables
as parameters. Moreover, we can chain multiple TXL transfor-
mations to preprocess the code or to use it as part of a pipeline
with other commands. In general, our method is adaptable and
can be customized to detect various sinks and sources.

After marking the data flow and adding tags, we generate a
graph representation using Graph Modeling Language (GML),
which models the data flows within the application. Running
the TXL slicer on the Kotlin source code produces a marked
Kotlin file that highlights both the sink statements and the
statements leading to them. GML allows us to assign custom
attributes to each node, such as whether it represents a source
or a sink, or its level of impact. These impact levels can then
be used to filter and generate data flows that exceed a specified
impact level.

This answers RQ1 and show our approach of combining
modeling and static analysis which can be employed to detect
various types of vulnerabilities and properties in the code. We
will demonstrate this in two experiments on AndroidAPS.

IV. PRIVACY EXPERIMENT: LOGGING VULNERABILITIES

In the first experiment, we demonstrate how our tool can
be used to identify logging vulnerabilities. It is recommended
that programmers avoid logging sensitive information as noted
by the CERT coding standards [4] and as shown by the work
Zhiyuan Chen [5] [6]. This is because logs can be obtained by
an unauthorized party. In the case of medical devices, it is also
important to have transparency with the user of the nature of
the data that can be logged, even if it is used for debugging.

AndroidAPS makes extensive use of logs. It defines a
custom logging function, aapsLogger, which is used 3,059
times throughout the application. We aim to examine how
many of these logs contain sensitive information.

To detect logging vulnerabilities, we examine the relation-
ships between entities leading to logging statements. Specif-
ically, we aim to determine whether data passed to logging
functions is sensitive and potentially subject to leakage. In this
experiment, we treat any logging function as a potential sink.
A more thorough examination would analyze the implemen-
tation details of the logging functionality itself to determine
its risk level. However, this is considered out of scope since
AndroidAPS relies on an external library for its main logging
functionality.

The primary challenge in this experiment is identifying the
sensitivity of variables passed to logging functions. Given the
extensive use of logging and the large number of variables
involved, manual inspection is impractical. Instead, we utilize
the GML and flow reporting stages of our framework to
automate this process.

Our framework supports a customizable approach to fil-
tering entity relationships. It allows for both fine-grained
and coarse-grained definitions of sensitive variables. For this
experiment, we employed a coarse-grained approach by cate-
gorizing classes and files based on their potential to handle
sensitive data. After manually reviewing the codebase, we
labeled classes accordingly and tracked variable flows based
on the class of origin, which determined their sensitivity. The
sink flow is tracked through impactful files, while ignoring
flows through ones that were flagged irrelevant.

1) Logging Test Results: We ran our tool using aapsLogger
as a sink to trace whether any sensitive data flowed into the
logging calls. We identified 144 potential flows across 48
sinks where a variable, originating from a sensitive context,
was passed to the logger. Upon manual inspection, we de-
termined that 56 of these flows (approximately 32%) were
false positives. This rate is largely due to the coarse-grained
tagging approach, so variables that are not sensitive but were
contained in files that were flagged impactful, were included.
This could be reduced by incorporating more fine-grained
sensitivity flags.

O e R S

TS

~N

An excerpt of the code is shown in Listing 2. In this
example, the logger records the Total Daily Dose (TDD) value,
which is considered sensitive information and should not be
accessible to others without the user’s consent.

Listing 2. AndroidAPS Logging

data class TotalDailyDose(

V/EEE:

val tdd = TotalDailyDose (timestamp = startTime)
tdd.totalAmount = tdd.bolusAmount + tdd.basalAmount
aapsLogger.debug (LTag.CORE, tdd.toString ())

However, it should be noted that this approach has its
limitations. Due to its coarse-grained analysis, it is susceptible
to false positives. When examined in more detail, as shown
in Listing 3, we observe that the log records the value result,
which originates from the fromString function in the Bolus
class. Although the flow passes through impactful files, since
data related to bolus values is typically sensitive, the specific
value logged in this instance is merely a generated result code
and does not contain sensitive information.

This experiment demonstrates the potential for using our
approach to check for security concerns. We have shown that
our framework can incorporate sensitivity flags, offering a
flexible and extensible means of addressing additional vulnera-
bility types. This answers RQ2 regarding one privacy concern,
which is logging sensitive data. Our analysis indicates that
AndroidAPS makes extensive use of logging, some of which
may involve sensitive data and thus warrant closer inspection.
However, we acknowledge that our current file-level flagging
strategy introduces false positives, suggesting the need for
more fine-grained flagging to improve precision.

Listing 3. AndroidAPS Logging False Positive
fun fromString (name : ?) = values ().firstOrNull
{} ? : NORMAL
(oo
val serviceUUID = UUID.fromString (GattAttributes.
SERVICE_RADIO)

Jlooc

result = rileyLinkBle.readCharacteristicBlocking (
serviceUUID, radioDataUUID)

Joac

aapsLogger.error (LTag.PUMPBTCOMM, "FAIL: got invalid
result code: ${result.resultCode}

V. SAFETY EXPERIMENT: CHECKING CONSTRAINTS

In the second experiment, we further examine the usage of
our tool, this time looking into the safety of AndroidAPS.
AndroidAPS, and the algorithm, orefO underneath, depend
on certain features to insure the safety of its usage. One of
these properties is the enforcement of constraints to sensitive
data. This problem can be converted into source-sink pattern
problem, which our tool is capable of detecting in the Kotlin
source code.

We look at areas of the application where sensitive values
are set in the profile and used in calculations relating to the
APS operations. The sources are defined as the parts of the
code where the values are introduced, and the sinks are the part

of the codes where the values are committed to the profile. The
criteria for insuring safety is that the values are validated and
confined to the safety limits when input and modified through
the flow from the source and sink.

AndroidAPS can switch between two algorithms, Advanced
meal assist (AMA) and Super Micro Bolus (OpenAPS SMB)
which can be set by the user through GUI interactions. These
algorithms are implemented as plugins that are connected with
an adapter. The adapter communicates with a calculator file
and sends the result. The point of interest for us is the data
handling parts of the plugin and the adapter. Specifically where
the plugin sets the profile data through a setData function
which is later used by the calculations.

For our experiment, we are interested in the data handling
part of the code, mainly happening in the plugin setData
function. Our goal is to validate that all the values going into
setData are checked before reaching the function. In other
words, any flow going into the sink setData, should have a
validation step. This can be done using our framework, by
slicing the code with setData being the sink, then generating
GML representation of the flows, flagging nodes that match
the validation criteria. In the following sections, we will apply
this approach in the two algorithms.

In the AMA plugin, there are 12 values that are set to the
profile. These values are: profile, maxlob, maxBasal, minBg,
maxBg, targetBg, baseBasalRate, iobArray, glucoseStatus,
mealData, lastAutosensResult.ratio, and isTempTarget.

After running our test, with the sink setData, the source
being the entry points where the values are input, we tested for
verification using the queries check, valid and verify. We found
that the values are either checked using constraintsChecker or
verifyHardLimits functions, while there are some values that
were not checked or only have a null check.

1) Constraint Checks: For maxlob, maxBasal, and lastAu-
tosensResult.ratio, the test matches through the verification
function constraintChecker. This check can limit the value
further and provide reasoning for applied restrictions. The
flow traces these functions back to the Constraints interface,
with the functions implemented in constraintsChecler and
SafetyPlugin.

2) Hard Limits Check: For minBg, maxBg, targetBg, and
baseBasalRate the test matches through the verification func-
tion verifyHardLimits. This check is implemented in the
HardLimits class where constants are provided as hard limits
depending on the age of the user, whether they are a child, a
teenager, an adult, a resistant adult, or pregnant. The values
are called using corresponding functions and the limits are
verified through verifyHardLimits.

3) Null Check: For profile and glucoseStatus, the values are
only checked to be not null. For profile, and glucoseStatus, the
values are taken from a get function, and thus the plugin does
not modify the data at that stage. For the profile, this is the
object of the targeted profile set by the user, including the
profile ID. In itself it is not a value that is used calculation,
so validating it to be selected and not null is adequate. On the
other hand, the glucoseStatus is an input given by the source

sensor and does not have an explicit lower or upper constraint
by the plugin; the main check is that it is not missing and thus
not null.

In the case of loBArray, our tool did not detect an ex-
plicit checking step that matches our query in its assign-
ment or before setData. Tracking the slice backwards we
see that the flow comes from the IoB Calculation plugin,
through a series of functions and the sources being the
functions calculatelobFromBolusToTime and calculatelobTo-
TimeFromTempBasalsincluding ConvertedExtended. Tracking
the values through this functions, calculatelobFromBolus-
ToTime, does a validation step to the values being pro-
cessed, while calculatelobToTimeFromTempBasalsincluding-
ConvertedExtended does not have an explicit check that
matches our query. It should be noted that this does not mean
that the values are not safe. It shows that the function is not
being explicitly validated before being set in the profile.

The other value that is not checked is isTempTarget. This
is a binary value that is turned on or off in the AMA plugin
and thus does not require an additional checking step.

We also extended the experiment to the other algorithm
plugin, the SMB plugin. Our tests show that the plugin
follows and matches the same patterns for validation that the
AMA plugin had which were already discussed in the pre-
vious section. It introduces four new values: getMealDataW-
ithWaitingForCalculationFinish, smbAllowed.value, uam.value
and advancedFiltering.value, these are checked through con-
straintChecker.

This answers RQ2 regarding one aspect of safety, which is
the application of constraints to values used in calculations.
Overall, we can confirm that AndroidAPS follows its design
principles and provides mechanism to apply them through
hard limits and constraints. Nonetheless, we see that there is
one impacting variable, IoBArray in each plugin that is not
explicitly validated before being set to the profiles; instead it
relies on other plugins to do the calculation and validates the
input data at one entry point. We also see that the calculation
AMA and SMB plugins do not modify data in an unsafe
manner, but some of the variables are not explicitly checked
at the setData point.

VI. RELATED WORK

Previous surveys by Nazzal et al. [17], John Majikes et al.
[15] and Silvia Bonfanti [3] show the popularity of formal
methods and modeling techniques and the exploration of ap-
plying them to the verification of medical software. However,
one observation is that there is a gap in the research when
it comes to applying these techniques to real software, such
as do-it-yourself APS. Some of the recent contributions to
addres the safety of do-it-yourself APS include the work of
Chiara Toffanin et al. [23], whcih aims to simulate safety
testing in silico, and Jana Schmitzer et al. [21] which utilized
MATLAB/Simulink to speed the process.

Although there is academic research and many Android
static analysis tools [13], very few addresses Kotlin directly.
Existing static analysis tools, including SonarQube [22], PMD

[20], Polyspace [16], and CodeSonar [11], are primarily de-
signed to detect general code issues, such as bugs, errors, and
code smells, but do not give flexibility to address privacy
and safety issues of a specific targeted app. Krishnamurthy
et al. [12] explored the limitations of applying Java taint-
analysis tools to Kotlin applications, and implemented some,
but not all, solutions to the challenges. Our approach differs by
targeting Kotlin directly, taking its grammar into consideration,
which allows flexibility in using the tool to address a range of
different problems.

VII. LIMITATIONS AND FUTURE WORK

In this paper, we demonstrated our framework using a single
application. We plan to publish additional results from testing
other applications in the future.

While our study demonstrates the viability of using model-
ing and static analysis to address security and safety concerns,
it also has limitations, particularly the level of expertise
required to design effective tests and select appropriate sources
and sinks. The framework currently relies heavily on the user’s
understanding of the application’s structure and logic, which
reduces accessibility for non-experts and third-party reviewers.
In the future, automation and large language models could help
with source and sink selection and rule definition, and the
flexibility of our tool supports the integration of automatically
generated configurations.

To our knowledge, this is the first study to focus on directly
analyzing Kotlin Android apps from source code, specifically
targeting AndroidAPS; as a result, there were no existing
benchmarks for direct comparison. Although we manually
evaluated the tool’s performance, the absence of benchmarks
presents a threat to external validity.

VIII. CONCLUSION

We found that modeling and static analysis techniques can
be effectively combined and applied together to real-world
medical applications. In particular, we demonstrated that it
is possible to automatically extract a relational model directly
from Kotlin source code, including AndroidAPS, using our
TXL-based tool. Using static analysis, we can then track
specified data flows.

We conducted two experiments: one focused on privacy
by testing for logging vulnerabilities, and another on the
enforcement of safety constraints. Our results show that,
overall, AndroidAPS adheres to secure coding standards in
most cases. However, we found that the extensive logging
system may require further review to ensure private data is
not exposed, with 144 potential data flows reaching 48 sinks.
It is important to note that this result was obtained with a
coarse-grained flagging approach and a precision of 68%.
Additionally, the logging library used is third-party and falls
outside the scope of our current analysis. Regarding safety, we
found that the application validates most data inputs related
to insulin delivery; however, one data path did not match the
expected validation patterns and would require the developer’s
discretion.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]
[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]
[19]

(20]
[21]

[22]

[23]

REFERENCES

AndroidAPS. Androidaps. androidaps.readthedocs.io/. Accessed: 2025-
02-20.

AndroidAPS. Key aaps features. https://androidaps.readthedocs.io/en/
latest/DailyLifeWithAaps/KeyAapsFeatures.html. Accessed: 2025-02-
20.

Silvia Bonfanti, Angelo Gargantini, and Atif Mashkoor. A systematic
literature review of the use of formal methods in medical software
systems. Journal of Software: Evolution and Process, 30(5):e1943, 2018.
CERT Coordination Center. CERT Android coding standard - drd04-
j- https://wiki.sei.cmu.edu/confluence/display/android/DRD04-J.+Do+
not+log+sensitive+information. Accessed: 2025-02-20.

Zhiyuan Chen. A comprehensive study of privacy leakage vulnerability
in android app logs. In Proceedings of the 39th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE 24, page
2510-2513, New York, NY, USA, 2024. Association for Computing
Machinery.

Zhiyuan Chen, Soham Sanjay Deo, Poorna Chander Reddy Puttaparthi,
Yiming Tang, Xueling Zhang, and Weiyi Shang. From logging to
leakage: A study of privacy leakage in android app logs. In Proceedings
of the 39th IEEE/ACM International Conference on Automated Software
Engineering, ASE ’24, page 2484-2485, New York, NY, USA, 2024.
Association for Computing Machinery.

J.R. Cordy, C.D. Halpern, and E. Promislow. Txl: a rapid prototyping
system for programming language dialects. In Proceedings. 1988 Inter-
national Conference on Computer Languages, pages 280-285, 1988.
Leo Freitas, William E. Scott, and Patrick Degenaar. Medicine-by-wire:
Practical considerations on formal techniques for dependable medical
systems. Science of Computer Programming, 200:102545, 2020.
Gephi. Gml format from gephi’s documentation. https://gephi.org/users/
supported-graph-formats/gml-format/. Accessed: 2025-03-29.

Google. Kotlin docs - grammar. https://kotlinlang.org/docs/reference/
grammar.html. Accessed: 2025-02-20.

GrammaTech. Codesonar. https://www.grammatech.com/codesonar-cc.
Accessed: 2025-02-20.

Ranjith Krishnamurthy, Goran Piskachev, and Eric Bodden. To what
extent can we analyze kotlin programs using existing java taint analysis
tools? In 2022 IEEE 22nd International Working Conference on Source
Code Analysis and Manipulation (SCAM), pages 230-235. IEEE, 2022.
Li Li, Tegawendé F. Bissyandé, Mike Papadakis, Siegfried Rasthofer,
Alexandre Bartel, Damien Octeau, Jacques Klein, and Le Traon. Static
analysis of Android apps: A systematic literature review. Information
and Software Technology, 88:67-95, 2017.

Loop. Loop. https://loopkit.github.io/loopdocs/. Accessed: 2025-02-20.
John J Majikes, Rahul Pandita, and Tao Xie. Literature review of testing
techniques for medical device software. In Proceedings of the 4th
Medical Cyber-Physical Systems Workshop (MCPS’13), Philadelphia,
USA, 2013.

MathWorks. Polyspace. https://www.mathworks.com/products/
polyspace.html. Accessed: 2025-02-20.

Bara’ Nazzal, Manar H. Alalfi, and James R. Cordy. A survey on the
verification and validation of artificial pancreas software systems. In
2024 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), pages 1-9, 2024.

OpenAPS. Openaps. https://openaps.org/. Accessed: 2025-02-20.
OpenAPS. Openaps reference design. https://openaps.org/reference-
design/. Accessed: 2025-02-20.

PMD. PMD. https://pmd.github.io/. Accessed: 2025-02-20.

Jana Schmitzer, Carolin Strobel, Ronald Blechschmidt, Adrian Tappe,
and Heiko Peuscher. Efficient closed loop simulation of do-it-yourself
artificial pancreas systems. Journal of Diabetes Science and Technology,
16(1):61-69, 2022.

SonarSource. Sonarqube. https://www.sonarsource.com/products/
sonarqube/. Accessed: 2025-02-20.

Chiara Toffanin, Milos Kozak, Zdenek Sumnik, Claudio Cobelli, and
Lenka Petruzelkova. In silico trials of an open-source Android-based
artificial pancreas: a new paradigm to test safety and efficacy of do-it-
yourself systems. Diabetes technology & therapeutics, 22(2):112-120,
2020.

