
Abstract

Syntactic analysis forms a foundation of many source 
analysis and reverse engineering tools. However, a sin-
gle grammar is not always appropriate for all source 
analysis and manipulation tasks.  Small changes to the 
grammar can make the programs used to accomplish 
these tasks simpler and more straightforward.  This leads 
to a new paradigm of programming these tools: grammar 
programming.  This paper discusses several industry 
proven techniques that can be used when designing base 
grammars and when making task specific changes to 
grammars.

1. Introduction

Syntactic analysis plays a large part in the analysis and 
manipulation of software systems.  Syntax is the frame-
work on which the semantics of most modern languages 
is defined. We use the syntax to deal with scoping of 
names and precedence of operators.  Not surprisingly, syn-
tactic analysis forms a foundation of many source analysis 
and reverse engineering tools such as ASF+SDF [3], 
Stratego[18], REFINE [19], Draco[15] and TXL [4,5].

When using the TXL language, most programmers use 
a common grammar for the language that is being ana-
lyzed or modified.  TXL also allows the common gram-
mar to be modified on an ad hoc basis by each of the pro-
grams.  Small changes to the grammar can make signifi-
cant impact on the simplicity and maintainability of the 
programs.  Thus a new paradigm of programming is born: 
custom grammar modification.

2. Source Transformation in TXL

TXL is a programming language specifically designed 
to support structural source transformation.  The structure 
of the source to be transformed is described using an unre-
stricted ambiguous context free grammar from which a 
parser is automatically derived. While based on a top-down 
approach, this parser has heuristics to resolve both ambi-
guities and left recursion.

The transformations are described by example, using a 
set of context-sensitive structural transformation rules 
from which an application strategy is automatically in-
ferred.  Many of the principles behind native patterns 
[16,17] also apply to TXL’s by-example nature.   Some 
examples of our experience in using TXL for software en-
gineering problems are reported elsewhere [7].

2.1 The TXL Processor

Figure 1 shows the structure of the TXL language sys-
tem. A TXL program which is comprised of a grammar 
and a set of rules is read by the TXL processor. A parser is 
derived from the grammar and the input is parsed based on 
that grammar. The resulting parse tree is passed to the 
transform engine which applies the rules transforming the 
input tree as they run. The last phase of the processor 
walks the parse tree and produces the transformed output.

A full description of the TXL language is beyond the 
scope of this paper. However, we will give a short over-
view for readers who are not familiar with the language. 
Figure 2 shows a subset of the grammar for a simple 
Pascal-like language.  The special name ‘program’ defines 
the goal symbol of the grammar. Square brackets denote 
the use of a non-terminal in a production.  Prefixing a ref-
erence to a non-terminal symbol with the keyword repeat 
indicates a sequence of the non-terminals. Thus a program 
in our sample language is the keyword “program”, an 
identifier ([id]) and a semicolon followed by a sequence of 
definitions and a block, terminated by a period.

Vertical bars (‘|’) are used to indicate alternatives in the 
grammar productions. A definition in our sample language 
is a [constant_section], a [variable_section], a 
[type_section] or a [procedure_definition]. The list key-
word is like repeat, except that each instance of the non-
terminal is separated by a comma. Thus the [args] non-
teminal is defined as a list of expressions separated by 
commas and surrounded by round brackets.

The terminals of the grammar are tokens, which are re-
ferred to in the same way that non-terminals are used. In 
our example subset grammar, the symbol [id] refers to the 
identifier token which defaults to a contiguous sequence of 

Grammar Programming in TXL

Thomas R. Dean James R. Cordy Andrew J. Malton Kevin A. Schneider
Queen’s University Queen’s University U. of Waterloo U. of Saskatchewan
Kingston, Canada Kingston, Canada Waterloo, Canada Saskatoon,Canada

dean@cs.queensu.ca cordy@cs.queensu.ca malton@waterloo.ca kas@cs.usask.ca



letters, digits and underscores starting with a letter or un-
derscore (i.e. a C identifier).  The definitions of tokens can 
be changed by providing regular expression definitions, 
permitting the tokens conventions of other languages to 
be recognized. For example, COBOL identifiers (hyphens 
instead of digits) or Pascal style strings (‘’ instead of \’ for 
embedded quotes) can be defined as tokens.

2.2 Example: RSF from SQLj

Figure 3 shows a simple program used to extract a hy-
pothetical Rigi Standard Format (RSF)[14] relation 
‘MethodHostVar’ which identifies the host variables used 
in embedded SQL statements in each Java method. As a 
simple example, issues such as unique identification of 
methods and variables are ignored (they are addressed else-
where [8, 13, 9]). This program shows three techniques 
commonly used in TXL programs.

The first line includes the Java base grammar provid-
ing the definition of the Java language. The second line 
includes the SQLj subgrammar. This grammar modifies 
the Java grammar to include SQLj, an embedded SQL ex-

tension to Java.  The subgrammar links to the parent 
grammar through the use of redefinitions (explained next) 
to extend the base grammar.

The next three lines (ignoring blank lines) add a defini-
tion for RSF relations which are three identifiers on a 
line.  The ‘[NL]’ non-terminal is a formatting instruction 
to TXL to insert a newline when writing out the result 
tree.

The next five lines redefine the definition of 
[host_variable] in the SQLj subgrammar to embed an 
RSF relation. The ‘...’ character sequence means ‘the pre-
vious definition’ of this non-terminal symbol. So the re-
definition of host_variable is whatever a host variable was 
before or an RSF relation followed by a colon (‘:’) fol-
lowed by an identifier (id).

The last grammar modification redefines the whole 
program to be whatever it was before (a Java program 
with embedded SQL) or a sequence of RSF relations.

All the main rule of the program does is invoke the 
rule annotateHostVars followed by the function replace-
ByRSF.  The rule annotateHostVars visits each method 
once and the pattern of the rule separates the header (type, 

Original
Source Transformed

Source

TXL Processor

Parse Unparse
Parse
Tree

Transformed
Parse
Tree

Transform

TXL Program

Grammatical Structure
Specification

Structural
Transformation Rules

Figure 1. The TXL processor

define program define var_decl
   program [id] ;     [id] : [typeName]
   [repeat definition] end define
   [block].
end define define procedure_call

    [id] [args]
define definition end define
      [const_section]
    | [variable_section] define args
    | [type_section]     ‘( [list expression] ‘)
    | [procedure_definition] end define
end define

Figure 2. Subset of a Pascal-like language



name and parameters) from the body. It calls the rule 
doEachHostVar on the body of the method with the 
method name as a parameter.

The rule doEachHostVar adds the RSF relation 
MethodHostName to each host variable  expression. The 
RSF relation has the method name and the variable name 
as arguments.  The rule terminates when all host variables 
in that method have been annotated.

The rule replaceByRSF is applied to the entire pro-
gram. It uses the built in extraction rule (‘^’) to retrieve all 
of the RSF relations in the program.  The entire program 
is then replaced by the RSF relations.

Figure 4(a) shows a trivial snippit of java code with 
embedded SQL using SQLj.  It is a method which returns 
the commission rate given the employee number for the 
salesperson. Figure 4(b) shows the code after the rule 
[annotateHostVars] has been run.  Two RSF relations are 
now embedded in the source.  The rule replaceByRSF will 
extract the two RSF relations and generate the following 
output:

MethodHostVar getComm result
MethodHostVar getComm empId

include “Java.Grammar” rule annotateHostVars
include “SQLj.Grammar”   replace $ [method]

    T [type] Name [id] P [parms]
define RSF_Relation       B [body]
  [NL] [id] [id] [id]   by
end define     T Name P

      B [doEachHostVar Name]
redefine host_variable end rule
    ...
  | [RSF_Relation] rule doEachHostVar MethName [id]
    : [id]   replace [host_variable]
end redefine     : VarName [id]

  by
redefine program     ’MethodHostVar MethName VarName
    ...         : VarName
  | [repeat RSF_Relation] end rule
end redefine

function replaceByRSF
function mainRule   replace [program]
  replace [program]     P [program]
    P [program]   construct Rels [repeat RSF_Relation]
  by     _ [^ P]
    P [annnotateHostVars]   by
      [replaceByRSF]     Rels
end function end function

Figure 3. Generating RSF relations

  
float getComm(int empId){ String getComm(int empId){
  float result;   String result;
  #sql { select Commission   #sql { select Commission 
      into :result       into

      MethodHostVar getComm result
      :result

      from Salary where       from Salary where
      empNo = :empId }       empNo =

      MethodHostVar getComm empId
      :empId }

  return result;   return result;
} }

(a) (b)
Figure 4. Example snapshots for the program in figure 3



The TXL program from Figure 3 illustrates two major 
paradigms of TXL programming.  The first is the separa-
tion of sublanguages from the base grammar.  This same 
technique can be used to handle embedded SQL in COBOL 
or the use of CICS in COBOL or C.  In this way TXL is 
similar to the use of language modules in ASF+SDF [2].

The other, and more important, paradigm is the local 
changes to the grammar to simplify the program. Without 
these changes, the RSF relations would have to be accum-
ulated in a (possibly global) variable and written to a 
separate file. The program would not be as simple, and in 
our experience, not nearly as clear.

The point of both this example, and of the paper, is 
that the grammar is as likely to be changed as a rule is to 
be written.  TXL programmers colloquially refer  to the 
practice as grammar programming, and the maxim under-
lying the this practice is to “let the parser do the work”.

3. Grammar Programming

For us, grammar programming means writing a con-
text free grammar which is designed or adapted to the par-
ticular task, be it analysis or transformation.  Whereas the 
grammar which defines the front end of a compiler or 
other language processor is typically fixed and static, with 
grammar programming the programmer specifies or 
changes the parsing rules according to his needs.  Within a 
collection of related tasks implemented using grammar 
programming, the same input language (e.g. C source 
code) may be parsed using many different grammars.

In our experience, this is most conveniently imple-
mented by introducing a base grammar which defines the 
outline structure of the expected input language, and the 
standard non-terminal categories.  The base grammar is of-
ten recovered directly from language manuals, by hand or 
in a manner similar to Lämmel and Verhoef's semi-auto-
mation [12].  A TXL source program includes the base 
grammar and then uses grammar overrides to redefine non-
terminals or whole substructures of the base grammar, as 
required by the task.

Because the non-terminals of the base and subset 
grammar are referred to in the rules, it is important that 
the names of the non-terminals reflect the role that the 
non-terminal plays in the grammar.  This is very similar 
to the generally accepted practice in procedural program-
ming of giving constants and variables names that are rep-
resentative of the real world concept they represent.  The 
names of the non-terminals are typically those that are 
found in standard reference grammars. These observations 
are not new [16,17], but they are relevant to the discus-
sion of the rest of the paper.

There is a difference between the typical grammar used 
in a compiler and the typical base grammar used for a 
TXL program.  One of the purposes of the compiler 
grammar is to perform a syntactic check of the input, 
while a TXL grammar used for reverse engineering or de-
sign recovery is operating on code that has already been 
checked by a compiler.  There are distinctions important 
when checking syntax that are unimportant when analyz-
ing a program. For example, in standard Pascal, the order 
of constants, types variables and procedures in a block are 
defined and multiple instances are not permitted.  An 
analysis grammar may allow any number of these sections 
in any order.

There are also distinctions that a compiler grammar 
may not make that might be important to an analysis pro-
gram. For example, in the standard C reference and most 
C compiler grammars, the typedef keyword is treated as a 
declaration specifier.  There is no distinction at the gram-
mar level between the declaration of a type using typedef 
and the declaration of a variable. A analysis grammar 
might choose to separate the two cases. 

The rest of this paper examines several grammar pro-
gramming paradigms we have developed over years of 
TXL programming.

4. Grammar Programming Paradigms

There are several grammar programming paradigms 
that we have developed with experience in programming 
in TXL.  These techniques are not limited to TXL and 
may be applied in other typed rewriting systems such as 
ASF+SDF.  Because of limited space, all of the examples 
we examine in this paper are necessarily simplified from 
the form that would be used in real TXL applications. For 
example, references to variable names in programs may 
involve various qualifiers and modifiers.  We also ignore 
most the details of the rules that use the techniques to 
solve a particular problem. 

4.1 Rule Abstraction

Even if the base grammar is generalized as suggested 
in Section 3, there may be distinctions that are necessary 
in general but unimportant for a particular application. A 
simple approach would be to write separate rules for each 
case. Alternatively, one can remove the distinctions by 
overriding the grammar. One example of this type of 
problem is identifying those variables that are used in 
arithmetic contexts (i.e. addition,subtraction, etc.) in the 
COBOL language.

The COBOL base grammar has the normal multiple 
levels of precedence in the expression grammar, and the 

  
float getComm(int empId){ String getComm(int empId){
  float result;   String result;
  #sql { select Commission   #sql { select Commission 
      into :result       into

      MethodHostVar getComm result
      :result

      from Salary where       from Salary where
      empNo = :empId }       empNo =

      MethodHostVar getComm empId
      :empId }

  return result;   return result;
} }

(a) (b)
Figure 4. Example snapshots for the program in figure 3



non-terminal [statement] derives all of the different state-
ments.  Without grammar modification, we must write 
separate rules that target each level of precedence and each 
type of arithmetic statement (e.g. ADD statement).  By 
modifying the grammar, we can significantly reduce the 
number of rules needed to extract the information.  Figure 
5 shows the grammar overrides to handle arithmetic state-
ments and the single rule that is used to extract uses of 
identifiers in arithmetic statements.

The grammar modifications, shown on the left hand 
side of the figure, accomplish two things. The first is that 
the five COBOL arithmetic statements are grouped under a 
single non-terminal called [arithmetic_statement]. The 
second is that the [statement]  non-terminal is changed to 
recognize arithmetic statements before other statements.  
This grammar is ambiguous since the five statements 
characterized as arithmetic statements can be also reached 
through the other alternative of the non-terminal 
[statement].  The TXL parser resolves the ambiguity by 
choosing the first matching alternative.

The right hand side of Figure 5 shows how this modi-
fied grammar is used by the rule annotateArithStatements.  
The rule is called with the COBOL program name as a pa-
rameter (PN) and visits each arithmetic statement extract-
ing the identifiers from the rule.  The function buildRSF 
is used to build an RSF relation Arith for each of the 
identifiers. The changes to the grammar allow us to write 

one rule where the base grammar would require five sepa-
rate rules.  The RSF relations generated by annotateArith-
Statements would be gathered together and output by a 
rule similar to replaceByRSF from Figure 3.

4.2 Grammar Specialization

Grammar productions, like procedures are often reused 
when the same concept is reused in the grammar. For ex-
ample, the same non-terminal may be used for all refer-
ences to names of variables.  While this may be useful for 
most analysis and manipulation tasks, for some tasks, 
some distinctions may be necessary.

Figure 6 shows an example of how the grammar can 
be used to distinguish between the declaration and use of 
variables in a Pascal-like language.  We only show the 
subset of the grammar involving variable declaration, and 
variable and function reference.  In the locations of the 
grammar where a name is declared, the [decl_name] non-
terminal is used, while where a name is referenced, the 
[ref_name] non-terminal is used.  Both of these symbols 
derive the same non-terminal, [name], which in turn de-
rives whatever a name is in the language.  This permits 
rules to separately target declarations and references of 
names.  This particular case is often used when building 
base grammars.

define var_decl define decl_name
   [list decl_name] : [type]   [name]
end define end define

define factor define ref_name
    ‘not [factor]   [name]
  | [ref_name] [opt arguments] end define
end define

Figure 6. Grammar specialization example

define arithmetic statement rule annotateArithStatements PN[id]
    [add_statement]  replace [statement]
  | [subtract_statement]     Arith [arithmetic_statement]
  | [mult_statement]  construct ArithIds [repeat id]
  | [divide_statment]     _ [^ Arith]
  | [compute_statement]  construct FS[repeat RSF_relation]
end define   _ [buildRSF ‘Arith PN

                  each ArithIds]
redefine statement  by
    [repeat RSF_relation]     FS
    [arithmetic_statement]     Arith
   | ... end rule
end redefine

Figure 5. Rule abstraction: recognizing arithmetic statements



Another example of this technique that would be used 
ad hoc for a specific TXL program would be to use over-
rides to further refine the grammar to distinguish between 
references that modify variables (i.e. left hand side of as-
signment) and references that do not modify variables [11, 
20].  Figure 7 shows some of the grammar overrides for 
such a program.  We define the non-terminals [get_ref] and 
[put_ref], both of which derive the non-terminal 
[ref_name], which is defined as it was in Figure 6. Uses of 
[ref_name] in the grammar are redefined to use the appro-
priate non-terminal. For example, the assignment state-
ment, which modifies the left hand side of the assignment 
operator is redefined to use the [put_ref] non-terminal and 
factor, which represents a read access to a variable as a get 
reference ([get_ref]).  The grammar treats a function call as 
a get_ref of the function.

4.3 Grammar Categorization

One example of the categorization paradigm is the 
typedef problem in C that we discussed previously.  The 
grammar provides separate grammar non-terminals and 
productions for variable declarations and for type defini-
tions using typedef.  In this case the grammar is unambi-
guous. On branch of the grammar requires the keyword 
typedef, while the other branch does not permit typedef to 
occur.

Another example is shown in Figure 8.  In this exam-
ple, an ambiguity is deliberately introduced in the gram-
mar in method call.  As mentioned in section 4.2, the 
TXL parser resolves ambiguities by choosing the first 
listed choice that matches.  Thus functions with jdbc 

names will be parsed as a jdbc method call.  This is an 
somewhat simplistic example in that any method with the 
same name will be classified as a jdbc function call. But it 
suffices to illustrate the technique. 

4.4 Union Grammars for Translation

When automatically translating between two lan-
guages, the grammar for the conversion program must be 
able to hold both languages.  If the grammars are similar, 
they can be combined at each level where they match. For 
example, when translating C to Pascal, both languages are 
block/statement/expression based languages.  We could 
combine the grammars at the global declaration level, the 
procedure level, the statement level and the expression 
level.  As mentioned earlier, we assume the input is cor-
rect since the mixed grammar will allow mixed programs 
as input.

Figure 9 shows how the grammar can be combined at 
several of these levels.  We redefine the non-terminal 
[program] to be a Pascal or a C program.  The two gram-
mar are rejoined at the non-terminal [decl] since a C pro-
gram is a sequence of declarations and a Pascal program is 
a sequence of declarations followed by a block (the main 
program).

The non-terminals [begin_or_brace] and [end_or-
_brace] handle the minor differences between Pascal and C 
blocks as does the minor difference of the presence or ab-
sence of the then keyword in the if statement  The new 
definition of the non-terminal [block] is a merge of the 
Pascal and C definitions which allows local declarations.

define method_call define jdbc_name
    [jdbc_call]     createStatement
  | [id] [arguments]   | prepareStatement
end define   | executeUpdate

  | executeQuery
define jdbc_call   | getRow
   [jdbc_name] [arguments] end define
end define

Figure 8. Grammar categorization example

define get_ref redefine assignment_statement
    [ref_name]     [put_ref] := [expression]
end define end redefine

define put_ref define factor
    [ref_name]     ‘not [factor]
end define   | [get_ref] [opt arguments]

end define
Figure 7. Example GetRef/PutRef grammar overrides



When the languages are farther apart, an alternate tech-
nique must be used.  In this approach, the translation is 
broken up into multiple independent programs each of 
which performs a small part of the overall translation.  
The main difference is that the first program will use the 
grammar for the input language and only provide overrides 
for the changes it will make. The second program will use 
the overrides for the first program and adds several over-
rides of its own.  At some point, the number of overrides 
becomes a significant overhead.  At this time an interme-
diate base grammar is written which excludes the features 
of the input language that have already been translated and 
includes the features of the target language that has been 
used. The next several passes apply changes to this inter-
mediate grammar, yielding a new intermediate grammar. 
One initial prototype for translating COBOL to Java had 
seventy–two passes.

The technique was later modified [10] and used to 
transform the graphs generated by the GNU C compiler to 
graphs compatible with the Datrix [1] schema.  In this 
case, a single mixed schema (graph equivalent of 
grammar), and multiple independent passes were used.

4.5 Markup

For several transformation projects we found it con-
venient to separate the identification of the code features to 

be transformed from the actual transformation. For exam-
ple, in LS/2000 [8], the identification of Y2K sensitive 
code was separated from the actual remediation of the code. 
The identification phase was very aggressive, since it was 
important that no Y2K bugs escape identification, and a 
reasonable number of false positives (i.e. Y2K safe code) 
could be tolerated.  The transformation phase was conser-
vative, and the client could manually fix any Y2K prob-
lems that were not transformed as long as they were iden-
tified.  It also meant that any of the false positives identi-
fied would not be remediated and the client would not have 
to undo any of the changes made by the tool. The identifi-
cation program communicated through the use of markup.

Figure 10 shows a markup of code identifying a condi-
tion that leads to an abnormal termination. Such a markup 
is useful when tracking down unexpected errors. 

In TXL, markup is accomplished in two ways.  Figure 
10 shows an example of grammar based markup.  In this 
method, we override the base grammar to allow markup 
symbols on those elements of the grammar that we are in-
terested in. Our previous example (from figure 10) required 
that we be able to identify expressions of interest.   The 
right hand side of the figure shows a sample rule that 
might use the markup.  The skipping statement in TXL 
prohibits the rule from searching inside of subtrees rooted 
at the given non-terminal. In this case, the skipping state-
ment prevents the rule from going into an infinite loop.  

f = fopen(filename, “r”);
if (<ERROR_CONDITION>f == NULL</ERROR_CONDITION>) {
    fprintf(stderr,”could not open %s for input\n”,filename)
    exit(ENOFILE)
}

Figure 10. Example code markup

define program define end_or_brace
    [pascal_program]   ‘end | ‘}
  | [c_program] end define
end define

define block
define pascal_program   [begin_or_brace]
  ‘program [id] [file_header]   [repeat decl]
    [repeat decl]   [repeat statement]
    [block] ‘.   [end_or_brace]
end define end define

define c_program define if_statement
  [repeat decl]   ‘if [expression] [opt ‘then]
end define   [statement]

  ‘else [statement]
define begin_or_brace end define
  ‘begin | ‘{
end define

Figure 9. C/Pascal union grammar



The rule replaces an expression that meets some condition 
with a marked up expression containing the same expres-
sion. By prohibiting the rule from matching inside of ex-
pressions, the new subexpression is not matched again.

The information used to identify which features to 
markup (e.g. which expression) can come from several 
places.  It can come from analysis of other features in the 
program, or it can be communicated in fact from from 
global analysis done over several programs [8].  This 
technique proved to be so useful, that it was implemented 
in a higher level language, HSML [6].

Markup was one of the reasons that the polymorphic 
non-terminal [any] was introduced into TXL. Figure 12 
shows a modified version of figure 11, based on the TXL 
manual [5].  Instead of overriding expression to permit 

markup, the [any] token is used to indicate that any non-
terminal is permitted as part of markup.

There are two changes to the rule annotateExpression. 
The first is that it calls the function doMarkup to add the 
markup to the input.  The second is that the skipping 
clause now indicates that the non-terminal markup is not 
to be traversed when looking for a match.

The function doMarkup is where the [any] tag is used 
within the rule.  As a pattern, it matches any non-termi-
nal.  In this case it matches the expression and allows us 
to replace the expression non-terminal with a markup non-
terminal.  Polymorphic rules are generally discouraged in 
TXL programming since they intentionally violate the 
type constraints imposed by the grammar.

include “C.Grammar”

define startmark rule annotateExpression
    < [id] >     skipping [expression]
end define     replace [expression]

        E [expression]
define endmark     where
    </[id]>         E [meetsSomeCondition]
end define     by

        <interesting>E</interesting>
redefine expression end rule
      ...
    | [startmark][expression][endmark]
end redefine

Figure 11. Grammar and rules for markup

include “C.Grammar” rule annotateExpression
    skipping [markup]

define startmark     replace [expression]
    < [id] >       E [expression]
end define     where

      E [meetsSomeCondition]
define endmark     by
    </[id]>       E [doMarkup ‘interesting]
end define end rule

define markup function doMarkup Tag [id]
   [startmark]   replace [any]
     [any]     Any [any]
   [endmark]   construct Markup [markup]
end redefine     '< Tag '> Any '</ Tag '>

  deconstruct Markup
    MarkupAny [any]
  by
    MarkupAny
end function

Figure 12. Polymorphic grammar and rules for markup



5.  Industrial Experience

All of these techniques were applied in the LS/2000 
[8] and  LS/AMT tools developed at Legasys Corp. in 
Kingston. Together these two tools have analyzed and 
transformed more than 4.5 billion lines of COBOL, PL/I 
and RPG. While individual projects are confidential, some 
of the subjects of these projects were

• Automated Language Translation (Fortran to Java, 
Cobol to Java)

• Automated migration from a character terminal envi-
ronment to an enterprise messaging environment

• Automated migration from a character terminal envi-
ronment to a three tier web based environment

• Performance analysis of a mutli-step mainframe 
batch program

• Analysis of decision points leading to abnormal ter-
mination.

Since these tools were being used in an industrial set-
ting, performance of the tools was a concern.  Our profil-
ing of the time spent in these processes indicates that 
parsing was never a significant fraction of the time.  This 
leads to the second maxim of TXL programming, which 
is that “parsing is free”.  As a matter of fact, significant 
performance gains in the runtime of our tools were experi-
enced almost every time the rule sets were simplified us-
ing one of the techniques we have presented in this paper.

6. Conclusions

TXL’s flexible grammar definition capability and effi-
cient parser make it easy for programmers to customize a 
grammar to the problem. This leads to a new paradigm for 
programming in rule based systems.  The grammar sys-
tem in TXL is flexible enough that grammar changes are 
as likely to be written as rules when solving a source code 
analysis or manipulation problem. These techniques are 
not limited to TXL, and can be used in any term rewriting 
system that uses an underlying grammar to guide the re-
writing.

As rewrite systems such as TXL and ASF+SDF are 
used for more industrial projects involving analysis and 
transformations of large legacy software systems, tech-
niques that make the best use of the strengths of these 
systems becomes more important.

Bibliography

[1] Bell Canada, Datrix Abstract Semantic Graph: Ref-
erence Manual, version 1.4, Bell Canada Inc., 
Montreal Canada, May 01, 2000.

[2] vand den Brand, M., Sellink, A., Verhoef, C., 

“Current Parsing Techniques in Software Renovation 
Considered Harmful”, Proc. 6th International Work-
shop on Program Comprehension (IWPC 98), Is-
chia, Italy, June 1998, pp. 108–117.

[3] van den Brand, M., van Deursen, A., Heering, J., de 
Jong, H., de Jonge, M., Kuipers, T., Klint, P., 
Moonen, L., Olivier, P., Scheerder, J., Vinju, J., 
Visser, C., and Visser, J., “The ASF+SDF Meta-
Environment: a component-based language develop-
ment environment”, Compiler Construction 2001 
(CC 2001), Lecture Notes in Computer Sicence, R. 
Wilhelm, ed., Vol 1827, Springer Verlag, 2001, pp. 
365–370. 

[4] Cordy, J.R., Halpern, C.D., Promislow, E., “TXL: 
A Rapid Prototyping System for Programming Lan-
guage Dialects”, Computer Languages, 16(1), Janu-
ary 1991, pp. 97-107.

[5] Cordy, J.R., Carmichael, I.H. and Halliay, R., The 
TXL Programming Language - Version 10, Queen's 
University at Kingston and Legasys Corporation, 
Kingston, January 2000 (65 pp).

[6] Cordy, J., Schneider, K., Dean, T., Malton, A., 
“HSML: Design Directed Source Code Hot Spots”, 
Proc. 9th International Workshop on Program Com-
prehension , Toronto, Canada, May 2001, pp. 
145–154.

[7] Cordy, J., Dean, T., Malton, A., Schneider, K., 
“Software Engineering by Source Transformation – 
Experience with TXL”, Proc 1st International 
Workshop on Source Code Analysis and Manipula-
tion, Florence, Italy, November 2001, pp. 168–178.

[8] Dean, T.,  Cordy, J., Schneider, K., Malton, A., 
"Experience Using Design Recovery Techniques to 
Transform Legacy Systems", Proc. ICSM 2001 - 
IEEE International Conference on Software Main-
tenance, Florence, November 2001, pp. 622-631.

[9] Dean, T. Cordy, J., Schneider, K., Malton, A., 
“Unique Naming In Reverse Engineering”, in prepa-
ration.

[10] Dean, T., Malton, A., Holt, R., “Union Schemas as 
a Basis for a C++ Extractor”, Proc 8th Working 
Conference on Reverse Engineering, Stuttgart, 
Germany, October 2001, pp. 59–67.

[11] Lamb, D., Schneider, K., “Formalization of Infor-
mation Hiding Design Methods”, Proc. CASCON 
‘92, IBM Center for Advanced Studies Conference, 
Toronto, Canada, November, 1992, pp. 201-214.

[12] Lämmel, R., Verhoef, C., “Semi-automatic Gram-
mar Recovery”, Software Practice & Experience, 
31(15), December 2001, pp. 1395-1438.

[13] Malton, A.J., Schneider, K.A., Cordy, J.R., Dean, 
T.R. et al., "Processing Software Source Text in 



Automated Design Recovery and Transformation", 
Proc. IWPC 2001 - IEEE 9th International Work-
shop on Program Comprehension, Toronto, May 
2001, pp. 127-134.

[14] Müller, H., Klashinsky, K., “Rigi – A System for 
Programming-in-the-Large”, Proc. 10th Interna-
tional Conference on Software Engineering (ICSE 
88), pp. 80-86.

[15] Neighbors, J., The Draco Approach to Constructing 
Software from Reusable Components”, IEEE Trans-
actions on Software Engineering, 10(5), September 
1984, pp. 564-574.

[16] Sellink, A., Verhoef, C., “An Architecture for Auto-
mated Software Maintenance”, Proc. 7th Interna-
tional Workshop on Program Comprehension 
(IWPC 99), Pittsburgh, Pennsylvania, May 1999, 
pp. 38–48.

[17] Sellink, A., Verhoef, C., “Native Patterns”, Proc. 
5th Working Conference on Reverse Engineering, 
Honolulu, Hawaii, October 1998 1998, pp. 89-103.

[18] Visser, Eelco, “Stratego: A Language for Program 
Transformation Based on Rewriting Strategies. Sys-
tem description of Stratego 0.5”, Rewriting tech-
niques and Applications (RTA ‘01), Lecture Notes 
in Computer Science, A Middeldorp, ed. Springer-
Verlag, May 2001, pp. 357–361.

[19] Reasoning Systems, Refine Uses Manual, Palo 
Alto, California, 1992.

[20] Lethbridge,T., Plödereder, E., Tichelaar, S., Riva, 
C., Linos, P., The Dagstuhl Middle Model 
(DMM), Version 0.003, June 6, 2001.


