
A Survey of Model Comparison Approaches and Applications

Matthew Stephan and James R. Cordy
Queen’s University, Kingston, Ontario, Canada

fstephan, cordyg@cs.queensu.ca

Keywords: Model Comparison, Model-Driven Engineering, Model Versioning, Model Clone Detection.

Abstract: This survey paper presents the current state of model comparison as it applies to Model-Driven Engineering.
We look specifically at how model matching is accomplished, the application of the approaches, and the types
of models that approaches are intended to work with. Our paper also indicates future trends and directions.
We find that many of the latest model comparison techniques are geared towards facilitating arbitrary meta
models and use similarity-based matching. Thus far, model versioning is the most prevalent application of
model comparison. Recently, however, work on comparison for versioning has begun to stagnate, giving way
to other applications. Lastly, there is wide variance among the tools in the amount of user effort required to
perform model comparison, as some require more effort to facilitate more generality and expressive power.

1 INTRODUCTION

Model-Driven Engineering (MDE) involves using
high-level software models as the main artifacts
within the development cycle. As MDE becomes
more prevalent in software engineering, the need for
effective approaches for finding the similarities and
differences among high-level software models, or
model comparison, becomes imperative. Since MDE
involves models being considered first class artifacts
by developers, it is clear model comparison is impor-
tant as it assists model management and may help
facilitate analysis of existing projects and MDE re-
search. It not only provides merit as a stand-alone
task, but helps engineers with other MDE tasks such
as model composition and inferring and testing of
model transformations (Kolovos et al., 2006).

Despite model comparison’s importance in MDE,
there are no definitive surveys on the state of the art
in model comparison research. There are a few pa-
pers that touch upon it, however, they look at only
a very small subset of the work in existence and ei-
ther at those intended for only a specific model type
or application. In this survey paper, we present the
current state of model comparison research and dis-
cuss the area’s future directions. The purpose in do-
ing so is to investigate and describe the approaches to
accomplish model comparison, the various applica-
tions that approaches are used for, and to categorize
the approaches by the types of models they are able
to compare. As such, this survey can be used by en-

gineers as a quick reference guide, organized by the
types of models being compared: If they must work
with a specific model type or need a specific applica-
tion to be accomplished via model comparison, they
can use this survey to determine if an approach is right
for them or if they should build upon an existing one.

We begin with background information on model
comparison in Section 2. Section 3 categorizes and
describes the existing model comparison approaches
by the type and subtype of models that they compare.
Section 4 provides a summary of the survey results
and future directions of the area. Section 5 identifies
other techniques and approaches related to the model
comparison work discussed in this survey, as well as
other surveys.

2 BACKGROUND

We begin by defining model comparison as it applies
in this survey. Much of the existing work can be split
into two categories: those techniques aimed at model
versioning, and those aimed at model similarity anal-
ysis, or “clone detection”, so we additionally define
those categories.

2.1 Model Comparison

This section discusses model comparison as a task
in MDE and refers specifically to the act of identi-
fying similarities or differences between model ele-

265



ments. Aside from versioning and model clone de-
tection, model comparison has merit in other areas of
MDE including being the foundation for model com-
position, model transformation testing (Kolovos et al.,
2006; Lin et al., 2004; Stephan and Cordy, 2013), and
others discussed in this survey.

Kolovos, Paige, and Polack (2006) define model
comparison as an operation that classifies elements
into four categories: (1) Elements that match and
conform, (2) Elements that match and do not con-
form, (3) Elements that do not match and are within
the domain of comparison, and (4) Elements that do
not match and are not within the domain of com-
parison. Matching refers to elements that represent
the same idea or artifact, while conformance is ad-
ditional matching criteria. An example of non con-
formance in an UML class diagram can be when a
class in both models has the same name but one is
abstract. So while they likely represent the same ar-
tifact, they do ’match enough’ or conform to one an-
other (Kolovos et al., 2006). The specific definition
of conformance is dependent on the current compari-
son context and goal. The domain of the comparison
can be viewed as matching criteria. Non-matching el-
ements that are outside the domain of comparison can
come from matching criteria that is either incomplete
or intentionally ignoring them.

In the context of model versioning, model com-
parison has been decomposed into three phases (Brun
and Pierantonio, 2008): Calculation, Representation,
and Visualization. However, there is nothing about
this decomposition that is specific to model version-
ing. In the following paragraphs we elaborate on these
phases and provide examples of approaches.

Calculation. Calculation is the initial step of model
comparison and is the act of identifying similarities
and differences between different models. It can seen
as the classification of elements into the four cate-
gories presented earlier. Calculation techniques can
work with specific types of models, such as done
with UML-model comparison methods (Alanen and
Porres, 2003; Girschick, 2006; Kelter et al., 2005;
Ohst et al., 2003; Xing and Stroulia, 2005). How-
ever, it is possible to have meta-model independent
comparisons, such as techniques for Domain Spe-
cific Models (Lin et al., 2007) and other such ap-
proaches (Rivera and Vallecillo, 2008; Selonen and
Kettunen, 2007; van den Brand et al., 2010). Kolovos,
Di Ruscio, Pierantonio, and Paige (2009) break down
calculation methods into four different categories
based on how they match corresponding model ele-
ments: 1]static identity-based matching, which uses
persistent and unique identifiers; 2]signature-based

matching, which is based on an element’s uniquely-
identifying signature that is calculated from a user-
defined function; 3]similarity-based matching, which
uses the composition of the similarity of an element’s
features; and 4]custom language-specific matching
algorithms, which uses matching algorithms designed
to work with a particular modeling language. In the
remainder of this survey we focus mainly on this
phase, as calculation is the most researched and is
of the greatest interest to our industrial partners since
it will help us with our goal of considering how to
discover common sub-patterns among models (Alalfi
et al., 2012).

Representation. This phase deals with the underly-
ing form that the differences and similarities detected
during calculation will take. One approach to repre-
sentation is the notion of edit scripts (Alanen and Por-
res, 2003; Mens, 2002). Edit scripts are an operational
representation of the changes necessary to make one
model equivalent to another and can be comprised
of primitive operations such as add, edit, and delete.
They tend to be associated with calculation meth-
ods that use unique identifiers and may not be user-
friendly due to their imperative nature. In contrast,
model-based representation (Ohst et al., 2003) is a
more declarative approach. It represents differences
by recognizing the elements and sub-elements that
are the same and those that differ. Most recently, an
abstract-syntax-like representation (Brun and Pieran-
tonio, 2008) has been proposed that represents the
differences declaratively and enables further analysis.
There are properties (Cicchetti et al., 2007; Van den
Brand et al., 2010) for representation techniques that
separate them from calculation approaches and make
them ideal for MDE environments. Cicchetti, Di Rus-
cio, and Pierantonio (2008) provide a representation
that is ideal for managing conflicts in distributed en-
vironments.

Visualization. Visualization involves displaying
the differences in a desirable form to the end user. Vi-
sualization is considered somewhat secondary to cal-
culation and representation and may be tied closely to
representation. For example, model-based representa-
tion can be visualized through colouring (Ohst et al.,
2003). Newer visualization approaches try to sepa-
rate visualization from representation (Van den Brand
et al., 2010; Wenzel, 2008; Wenzel et al., 2009).
There is also an approach (Schipper et al., 2009) to ex-
tend visualization techniques for comparing text files
to work with models by including additional features
unique to higher level representations, such as fold-
ing, automatic layout, and navigation.

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

266



2.2 Model Versioning

The need for collaboration amongst teams in MDE
projects is equally significant as it is in traditional
software projects. Traditional software projects
achieve this through Version Control Systems (VCS)
such as CVS1 and Subversion2. Similarly, for MDE,
it is imperative that modelers are able to work in-
dependently but later be able to reintegrate updated
versions into the main project repository. Traditional
VCS approaches do not work well with models as
they are unable to handle model-specific problems
like the “dangling reference” problem and others (Alt-
manninger et al., 2009).

Model versioning is broken into different phases
by different people (Alanen and Porres, 2003; Alt-
manninger et al., 2008; Kelter et al., 2005). Gener-
ally, it is seen to require some form of model com-
parison or matching, that is, the identification of what
model elements correspond to what other model el-
ements; detection and representation of differences
and conflicts; and model merging, that is, combining
changes made to corresponding model elements while
accounting for conflicts. For the purpose of this sur-
vey, we focus mainly on the first phase, model com-
parison. While the other phases are equally as im-
portant, we are interested mostly in the way model
versioning approaches achieve model comparison.

2.3 Model Clone Detection

Another example of model comparison being used in
a different and specific context is model clone detec-
tion. In traditional software projects, a code clone
refers to collections of code that are similar to one an-
other in some measure of similarity (Koschke, 2006).
One common reason that code clones arise in these
projects is the implementation of a similar concept
throughout the system. The problem with code clones
is that a change in this one concept means that the sys-
tem must be updated in multiple places. Research in
code clones is very mature and there are many tech-
niques and tools to deal with them (Roy et al., 2009).

The analogous problem of model clones refers to
groups of model elements that are shown to be similar
in some defined fashion (Deissenboeck et al., 2009).
By comparison with code clone detection, research in
model clone detection is quite limited (Deissenboeck
et al., 2010), with the majority of approaches thus far
tailored for Simulink data-flow models.

1http://www.nongnu.org/cvs/
2http://subversion.tigris.org

3 MODEL COMPARISON
APPROACHES AND
APPLICATIONS

This section categorizes existing model comparison
methods by the specific types of models they com-
pare and discusses the applications of the compar-
isons. Within each section, we further classify the ap-
proaches by the sub type of model they are intended
for. While some methods claim they can be extended
to work with other types of models, we still place each
one in only the category they have demonstrated they
work with and make note of the claimed extendability.

3.1 Methods for Multiple Model Types

This section looks at approaches that are able to deal
with more than one type of model, such as both struc-
tural and behavioral models. Approaches like this can
be more general, but can not use information specific
to the model type.

3.1.1 UML Models

UML is a meta model defined by the MOF and is the
most prominent and well known example of a MOF
instance. This section looks at model comparison ap-
proaches intended to compare more than one type of
UML model.

Alanen and Porres (2003; 2005) perform model
comparison as a precursor to model versioning. Their
model matching is achieved through static identity-
based matching as it relies on the UML’s univer-
sally unique identifiers(UUID). Their work is focused
on identifying differences between matched models.
They calculate and represent differences as directed
deltas, that is, operations that turn one model into the
other and that can be reversed through a dual opera-
tion. Their difference calculation is achieved through
the three steps that results in a sequence of operations:
1] Given a model V and V’, map matched model ele-
ments through UUID comparison; 2] Add operations
to create the elements within V’ that do not exist in
V and then add operations to delete the elements that
are in V that are not in V’; 3] For all the elements that
are in both V and V’, any changes that have occurred
to the features within these elements from V to V’ are
converted to operations that ensure that feature order-
ing is preserved.

Rational Software Architect. (RSA) is an IBM
product intended to be a complete MDE development
environment for software modeling. Early versions
of RSA, RSA 6 and earlier, allow for two ways of
performing model comparison on UML models, both

A�Survey�of�Model�Comparison�Approaches�and�Applications

267



Figure 1: RSA “Compare with Local History” Window,
adapted from (Letkeman, 2005).

of which are a form of model versioning: Compar-
ing a model from its local history and comparing a
model with another model belonging to the same an-
cestor (Letkeman, 2005). In both cases, model match-
ing is done using UUIDs. The calculation for finding
differences between matched elements is proprietary.

Figure 1 shows an example of the “compare with
local history” RSA window. The bottom pane is split
between the two versions while the top right pane de-
scribes the differences found between the two. The
window and process for comparing a model with an-
other model within the same ancestry is very similar.
In RSA version 7 and later a facility is provided by the
tool to compare and merge two software models that
are not necessarily from the same ancestor (Letke-
man, 2007). This is accomplished manually through
user interaction, that is, there is no calculation taking
place other than the option to do a relatively simple
structural and UUID comparison. The user selects el-
ements from the source that should be added to the
target, maps matching elements from the source and
target, and chooses the final names for these matched
elements.

Another example of a technique that compares
UML models and utilizes their UUIDs is proposed by
Ohst, Welle, and Kelter (2003). This technique trans-
forms UML models to graphs and then traverses each
tree level with the purpose of searching for identical
UUIDs. The technique takes into account differences
among the matched model elements, such as features
and relationships.

Selonen and Kettunen (2007) present a technique
for model matching that derives signature-match rules
based on the abstract syntax of the meta model de-
scribing the modeling language. Specifically, they
say that two models match if they belong to the same
meta class, have the same name and the same primary
context, which includes the surrounding structure of
the model comprised of neighbours and descendants.

They state that this technique can be extended to work
with any MOF-based modeling languages. Additional
rules can be added by extending the model with ap-
propriate stereotypes that the technique can interpret.

Odyssey VCS (Oliveira et al., 2005) is a model
versioning tool intended to work with all types of
UML models in CASE environments. It does not
perform model matching as all elements are linked
to a previous version, starting with a baseline ver-
sion. Differences or conflicts are detected by process-
ing XML Metadata Interchange (XMI) files and using
UML-specific knowledge to calculate what elements
have been added, modified, or deleted.

Storrle (2010) developed the MQlone tool to ex-
periment with the idea of detecting UML model
clones. They convert XMI files from UML CASE
models and turn them into Prolog 3. Once in Pro-
log, they attempt to discover clones using static iden-
tity matching combined with similarity metrics such
as size, containment relationships, and name similar-
ity.

3.1.2 EMF Models

Eclipse Modeling Framework (EMF) models 4 are
MOF meta-meta models that can define meta mod-
els, such as UML. They are intended for use within
the Eclipse development environment.

EMFCompare (Brun and Pierantonio, 2008) is an
Eclipse project. Rather than relying on EMF models’
UUIDs, they use similarity based-matching to allow
the tool to be more generic and useful in a variety of
situations. The matching calculation is based on vari-
ous statistics and metrics that are combined to gener-
ate a match score. This includes analyzing the name,
content, type, and relations of the elements. They also
filter out element data that comes from default val-
ues. It should be noted that while EMFCompare is
specific to EMF models, the underlying calculation
engine is meta-model independent, similar to the ap-
proaches discussed in Section 3.1.3

TopCased (Farail et al., 2006) is a project provid-
ing an MDE environment that uses EMF models and
is intended specifically for safety critical applications
and systems. It performs its matching and differenc-
ing using static identity-based matching, similar to
Alanen and Porres.

SmoVer (Reiter et al., 2007) is another model
versioning tool that can work with any EMF-based
model. In this approach they do both version-specific
comparisons like Odyssey VCS, termed syntactical,
and semantic comparisons. Semantic comparisons

3www.swi-prolog.org
4http://www.eclipse.org/emf/

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

268



are those that are carried out on semantic views. Se-
mantic views, in this context, are the resulting models
that come from a user-defined model transformation
that SmoVer executes on the original models being
compared in order to give the models meaning from
a particular view of interest. These transformations
are specified in the Atlas Transformation Language
(ATL) 5. Models are first compared syntactically, then
transformed, then compared once again. Matching is
accomplished through static-identity based matching
and differences are calculated by comparing structural
changes. The authors note that the amount of work re-
quired for creating the ATL transformations is not too
large and that “the return on investment gained in bet-
ter conflict detection clearly outweighs the initial ef-
fort spent on specifying the semantic views.” The ex-
amples they discuss required roughly 50 to 200 lines
of ATL transformation language code.

Riveria and Vallecillo (2008) employ similarity-
based matching in addition to checking persistent
identifiers for their tool, Maudeling. They use
Maude (Clavel et al., 2002), a high-level language that
supports rewriting-logic specification and program-
ming, to facilitate the comparison of models from
varying meta models specified in EMF. They provide
this in the form of an Eclipse plugin called Maudel-
ing. Using Maude, they specify a difference meta
model that represents differences as added, modified,
or deleted elements. The process first begins by us-
ing UUIDs. If there is no UUID match, they then
rely on a variant of similarity-based matching that
calculates the similarity ratio by checking a variety
of structural features. Then, to calculate differences,
they go through each element and categorize it based
on a number of scenarios and incorporate this infor-
mation into its difference meta model. There is no
user work required as Maudeling has the ATL trans-
formations within it that transforms the EMF models
into their corresponding Maude representations. Op-
erations are executed in the Maude environment auto-
matically, requiring no user interaction with Maude.

3.1.3 Metamodel-agnostic Approaches

This section discusses comparison approaches for
models that can conform to an arbitrary meta model,
assuming it adheres to specific properties.

Examples of Metamodel-independent approaches
that use similarity-based matching strategies include
the Epsilon Comparison Language (Kolovos, 2009)
and Domain-Specific Model DiffDSMDiff (Lin et al.,
2007). DSMDiff is an extension of work done on
UML model comparison techniques. DSMDiff uses

5http://eclipse.org/atl/

both similarity- and signature- based matching. The
similarity-based matching focuses on the similarity
of edges among different model nodes. DSMD-
iff evaluates differences between matched elements
and considers them directed deltas. While DSMDiff
was developed using DSMLs specified in the Generic
Modeling Environment (GME), the techniques can
be extended to work with any DSML creation tool.
The creators of DSMDiff propose allowing user-
interaction that will enable one to choose the map-
pings (matches) from a list of applicable candidates.

Epsilon Comparison Language (ECL) was de-
veloped after DSMDiff and SiDiff, which is dis-
cussed later, and attempts to address the fact that its
predecessors do not allow for modellers to config-
ure language-specific information that may assist in
matching model elements from different meta mod-
els (Kolovos, 2009). This is accomplished in a im-
perative yet high-level manner. ECL allows modelers
to specify model comparison rule-based algorithms
to identify matched elements within different models.
The trade off is that, while complex matching crite-
ria can be expressed using ECL, it requires more time
and knowledge of ECL. Kolovos acknowledges that
metamodel-independent approaches using similarity-
based matching typically perform fairly well, but
there often are “corner cases” that ECL is well suited
to identify.

A plugin for meta-Case applications was devel-
oped (Mehra et al., 2005) that performs model ver-
sion comparison for models defined by a meta-Case
tool. Meta-Case tools operate similarly to their CASE
counterparts except they are not constrained by a par-
ticular schema or meta model. This plugin matches
all the elements by their unique identifiers and cal-
culates the differences as directed deltas. Oda and
Saeki (2005) describe a graph-based VCS that is quite
similar in that it works with meta-Case models and
matches them using baselines and unique identifiers.
Differences are calculated as directed deltas with re-
spect to earlier versions.

Nguyen (2006) proposes a VCS that can detect
both structural and textual differences between ver-
sions of a wide array of software artifacts. This ap-
proach utilizes similarity-based matching by assign-
ing all artifacts an identifier that encapsulates the ele-
ment and representing them as nodes within a directed
attributed graph, similar to model clone detection ap-
proaches.

Van den Brand, Protic, and Verhoeff(2010) de-
fine a set of requirements for difference represen-
tations and argue that current meta-modeling tech-
niques, such as MOF, are not able to satisfy them.
They present their own meta-modeling technique and

A�Survey�of�Model�Comparison�Approaches�and�Applications

269



define differences with respect to it. They provide
a model comparison approach and prototype that al-
lows user configuration of what combination of the
four model-matching strategies to employ. The au-
thors provide examples where they extend the work
done previously for SiDiff, combining it with other
matching techniques, like using a UUID. This gener-
ality comes at a cost of a large amount of configura-
tion, work, and user-interaction.

There are methods that translate models into an-
other language or notation that maintain the semantics
of the models to facilitate model comparison. One
example is the work done by Gheyi, Massoni,and
Borba (2005) in which they propose an abstract equiv-
alence notion for object models, in other words, a
way of representing objects that allows them to be
compared. They use an alphabet, which is the set of
relevant elements that will be compared, and views,
which are mappings that express the different ways
that one element in one model can be interpreted
by elements of a different model. Equivalence be-
tween two models is defined as the case where, for
every interpretation or valid instance that satisfies one
model, there exists an equivalent interpretation that
satisfies an instance in the other model. They illus-
trate their approach using Alloy models 6. Similarly,
Maoz, Ringert, and Rumpe (2011b) present the no-
tion of semantic diff operators, which represent the
relevant semantics of each model, and diff witnesses,
which are the semantic differences between two mod-
els. Semantics are represented through the use of
mathematical formalisms. From these ideas, Maoz
et al. provide the tools cddiff and addiff for class
diagram differencing and activity class diagram dif-
ferencing, respectively. Other examples of translat-
ing models into another language include UML mod-
els being translated into Promela/SPIN models (Chen
and Cui, 2004; Latella et al., 1999; Lilius and Paltor,
1999), although this work does not intend to perform
model comparison nor differencing explicitly.

The Query/View/Transform(QVT) standard pro-
vides the outline for three model transformation lan-
guages that can act on any arbitrary model or meta-
model that conform to the MOF specification. One of
these languages, QVT-Relations(QVT-R) allows for a
declarative specification of two-way (bi-directional)
transformations and is more expressive than the other
QVT languages. This expressiveness allows for a
form of model comparison through its checkonly
mode, which is the mode where models are checked
for consistency rather than making changes (Stevens,
2009). In brief, game theory is applied to QVT-R
by using a verifier and refuter. The verifier confirms

6http://alloy.mit.edu

Figure 2: Normalised model graph of model clone example
(Deissenboeck et al., 2009).

that the check will succeed and the refuter’s objec-
tive is to disprove it. The semantics of QVT are ex-
pressed in such a way that implies “the check returns
true if and only if the verifier has a winning strategy
for the game”. This allows one to compare models
assuming a transformation was expressed in this lan-
guage that represented the differences or similarities
being searched for. In this case, the transformation
will yield true if the pair/set of models are consistent
according to the transformation.

3.2 Methods for Behavior/Data-flow
Models

3.2.1 Simulink and Matlab Models

CloneDetective (Deissenboeck et al., 2009) is an ap-
proach that uses ideas from graph theory and is appli-
cable to any model that is represented as a data-flow
graph. Models are first flattened and unconnected
lines are removed. Subsequently, they are normalised
by taking all of the blocks and lines found within the
models and assigning them a label that consists of
essential information for comparison. The informa-
tion described in the label changes according to the
type of clones being searched for by the tool. Fig-
ure 2 displays the result of this step on a Simulink
model, including the labels that come from normal-
isation, such as UnitDelay and RelOp:h. The grey
portions within the graph represent a clone. This is
accomplished by CloneDetective in its second phase:
clone pair extraction. This phase is the most similar
to the model matching discussed thus far, however,
rather than matching single elements, it is attempting
to match the largest common set of elements. It falls
into the category of similarity-based matching as the
features of each element are extracted, represented as
a label during normalisation, and compared.

Similarly, eScan and aScan algorithms attempt to
detect exact-matched and approximate clones, respec-
tively (Pham et al., 2009). Exact-matched clones are
groups of model elements having the same size and
aggregated labels, which contain topology informa-
tion and edge and node label information. Approx-
imate clones are those that are not exactly matching

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

270



but fit some similarity criteria. aScan uses vector-
based representations of graphs that account for a sub-
set of structural features within the graph. The main
difference between these algorithms and CloneDetec-
tive is that these algorithms group their clones first
and from smallest to largest. They claim that this
helps detect clones that CloneDetective can not. This
is later refuted, however, by the authors of CloneDe-
tective (Deissenboeck et al., 2010). aScan is able
to detect approximate clones while CloneDetective is
not. Much like CloneDetective, these algorithms uti-
lize similarity-based matching.

Al-Batran, Schatz, and Hummel (2011) note that
existing approaches deal with syntactic clones only,
that is they can detect only syntactically and struc-
tural similar copies. Using normalization techniques
that utilize graph transformations, they extend these
approaches to cover semantic clones that may have
similar behavior but different structure. So, a clone in
this context is now defined as two (sub)sets of models
that have “equivalent unique normal forms” of mod-
els. These unique normal forms are acquired by per-
forming 40 semantic-preserving transformations on
Simulink models. It was found that extending clone
detection in this way yields more clones than simple
syntactic comparison.

Most recently, Alalfi, Cordy, Dean, Stephan, and
Stevenson (2012) developed Simone, which detects
near-miss clones in Simulink models. This is done
by modifying existing code-clone techniques to work
with the textual representations of the Simulink mod-
els while still being model-sensitive. In comparison
to CloneDetective, they detect the same exact clones
and some additional near-miss ones.

3.2.2 Sequence Diagrams

Liu, Ma, Zhang, and Shao (Liu et al., 2007) discover
duplication in sequence diagrams. They convert se-
quence diagrams into an array and represent that ar-
ray as a suffix tree. This tree is traversed and dupli-
cates are extracted by looking for the longest com-
mon prefix, or elements that lead to the leaf node,
of two suffixes. Duplicates are defined as a set of
sequence-diagram fragments that contain the same el-
ements and have the same sequence-diagram specific
relationships. Figure 3 demonstrates an example of
a duplicate. In this case, the largest common pre-
fix include the four elements highlighted within each
diagram. The image is taken from their tool Dupli-
cationDetector. Much like the model clone detec-
tion approaches discussed, this technique employs a
variation of similarity-based matching as it is com-
paring a graph representation of a fragment‘s fea-
tures/elements.

Figure 3: Duplicate sequence fragment (Liu et al., 2007).

3.2.3 Statechart Diagrams

Nejati et al. (2007) match state chart diagrams for
the purpose of model merging. They accomplish
this by using heuristics that include looking at ter-
minological, structural, and semantic similarities be-
tween models. The heuristics are split into 2 cat-
egories: static heuristics that use attributes without
semantics, such as the names or features of ele-
ments; and behavioural heuristics, which find pairs
that have similar dynamic behavior. Due to the use
of heuristics, this approach requires a domain ex-
pert look over the relations and add or remove re-
lations, accordingly, to acquire the desired match-
ing relation. This approach employs both similarity-
based matching through static heuristics and custom-
language specific matching through dynamic heuris-
tics. After similarity is established between two state
charts, the merging operation calculates and repre-
sents differences as variabilities, or guarded transi-
tions, from one model to the other.

3.3 Methods for Structural Models

This section discusses approaches that are designed
to work with models that represent the structure of
a system. They benefit from the domain knowledge
gained by working with structural models only.

Early work on comparing and differencing soft-
ware structural diagrams was done by Rho and
Wu (1998). They focus on comparing a current ver-
sion of an artifact to its preceding ancestor.

3.3.1 UML Structural Models

UMLDiff (Xing and Stroulia, 2005) uses custom
language-specific matching by using name-similarity
and UML structure-similarity to identify matching el-
ements. These metrics are combined and compared
against a user-defined threshold. It is intended to be
a model versioning reasoner: It discovers changes
made from one version of a model to another.

A�Survey�of�Model�Comparison�Approaches�and�Applications

271



UMLDiff cld (Girschick, 2006) focuses on UML
class diagram differencing. It uses a combination
of static identity-based and similarity-based match-
ing within its evaluation function, which measures
the quality of a match. Similarly, Mirador (Barrett
et al., 2010) is a plugin created for the Fujaba (From
Uml to Java and Back Again)7 tool suite that allows
for user directed matching of elements. Specifically,
users can select match candidates that are ranked ac-
cording to a similarity measure that is a combination
of static identity-based and similarity-based match-
ing, like UMLDiff cld .

Reddy et al. (2005) use signature-based match-
ing in order to compare and compose two UML class
models in order to assist with Aspect-oriented mod-
eling (Elrad et al., 2002). Models are matched based
on their signatures, or property values associated with
the class. Each signature has a signature type, which
is the set of properties that a signature can take. Using
KerMeta8, a model querying language, the signatures
used for comparison are derived by the tool based on
the features it has within the meta model.

Berardi, Calvanese, and De Giacomo (2005)
translate UML class diagrams into ALCQI, a “sim-
ple” description logic representation. They show that
it is possible for one to reason about UML class di-
agrams as ALCQI description logic representations
and provide an encoding from UML class diagrams
to ALCQI. While the translation does not maintain
the entire semantics of the UML classes, it preserves
enough of it to check for class equivalence. Because
they use UML-specific semantics, we argue that theirs
is a form of language-specific matching.

Maoz, Ringert, and Rumpe (2011a) extend work
on semantic differencing and provide a transla-
tion prototype, called CD2Alloy, that converts UML
classes into Alloy. This Alloy code contains con-
structs that determine the corresponding elements of
two UML class diagrams and also allows for seman-
tic comparisons, such as determining if one model is
a refinement of another. It can be considered to be
a custom-language specific comparison because of its
use of UML semantics.

3.3.2 Metamodel-agnostic Approaches

Preliminary work on model comparison was done
by Chawathe, Rajaraman, Garcia-Molina, and
Widom (1996) in which they devised a comparison
approach intended for any structured document. They
convert the data representing the document structure
into a graph consisting of nodes that have identifiers

7http://www.fujaba.de/
8http://www.kermeta.org

Figure 4: Example SiDiff comparison (Kelter et al., 2005).

derived from the corresponding elements they rep-
resent. This approach, which is analogous to the
model clone detection techniques, uses similarity-
based matching and describes differences in terms of
directed deltas.

SiDiff (Kelter et al., 2005) is very similar to
UMLDiff except SiDiff uses a simplified underlying
comparison model in order to be able to handle any
models stored in XMI format. Similarly to UMLDiff,
it uses similarity-based metrics. In contrast to UMLD-
iff, as shown by the up arrow in Figure 4, its calcula-
tion begins bottom-up by comparing the sub elements
of a pair of model elements starting with their leaf el-
ements. This is done with respect to the elements’
similarity metrics. An example of a weighted sim-
ilarity is having a class element consider the simi-
larity of its class name weighted the highest. So, in
the case of the two Class elements being compared in
Figure 4, all of the Classifier elements are compared
first. If a uniquely identifying element is matched,
such as a class name, they are immediately identified
as a match. This is followed by top-down propagation
of this matching pair. This top-down approach allows
for the algorithm to deduce differences by evaluating
a correspondence table that is the output of the match-
ing phase.

Similarly to the translation of UML class
diagrams into ALCQI, D’Amato; Staab;and
Fanizzi (2008), propose a comparison measure
for description logics, such as those used in the
Semantic Web 9. This is accomplished by using ex-
isting ontology semantics. They describe a semantic
similarity measure that is able use the semantics of
the ontology that the concepts refer to.

3.4 Methods for Product Line
Architectures

Chen, Critchlow, Garg, Van der Westhuizen, and Van
der Hoek (Chen et al., 2004) present work to do com-
parisons of product line models for merging. The

9http://semanticweb.org/

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

272



assumption in this work is that the comparison is
being done between two versions of the same arti-
fact. Comparison is done recursively and is increas-
ingly fine grained as the algorithm delves deeper into
the product-line hierarchy. This approach employs
similarity-based matching: lower elements in the hi-
erarchy compare interfaces, optionality, and type; and
higher level elements compare the elements contained
within them. Differences are represented as directed
deltas.

Rubin and Chechik (2012) devise a framework for
comparing individual products that allows for them to
be updated automatically to a product line conform-
ing to those used in product-line engineering. They
use similarity-based matching, that is, products are
viewed as model elements and a match is defined as
the case where a pair of model elements have features
that are similar enough to be above a defined weighted
threshold. The authors note that “(their) refactoring
framework is applicable to a variety of model types,
such as UML, EMF or Matlab/Simulink, and to differ-
ent compare, match and merge operators”. The fore-
seeable user work that would be required in using this
framework includes having a domain expert specify
the similarity weights and features of interest and also
determining the optimum similarity thresholds.

3.5 Methods for Process Models

Soto and Munch (2006) discuss the need for ascer-
taining differences among software development pro-
cess models and outline what such a difference sys-
tem would require. They devise Delta-P (Soto, 2007),
which can work with various UML process models.
Delta-P converts process models into Resource De-
scription Framework (RDF) 10 notation in order to
have them represented in a normalized triplebased no-
tation. It then performs an identity-based compari-
son and calculates differences. They employ static-
identity based matching as they use unique identifiers.
Differences are represented as directed deltas, which
can be grouped together to form higher level deltas.

Similarly, Dijkman, Dumas, Van Dongen, Karik,
and Mendling(Dijkman et al., 2011) discuss three
similarity metrics that help compare stored process
models: node matching similarity, which compares
the labels and attributes attached to process model el-
ements; structural similarity, which evaluates labels
and topology; and, behavioral similarity, which looks
at labels in conjunction with causal relations from the
process models.

10http://www.w3.org/RDF/

4 SUMMARY AND FUTURE
DIRECTIONS

Table 1 summarizes the approaches discussed in this
survey paper organized by the type and sub type
of model they can compare. As seen in the table,
similarity-based matching is the most commonly em-
ployed strategy. It is clear that one future direction of
work in this area is the focus on tools that are able to
work with models that conform to an arbitrary meta
model. This result is consistent with the recent trend
in domain-specific modeling.

The majority of work in model comparison ap-
pears to be geared towards model versioning, how-
ever the most recent work is not. Much of the re-
cent work is focusing on model transformation test-
ing and model clone detection. Also, new extensions
of existing model comparison approaches are being
attempted such as the extension of model clone de-
tection in order to detect common sub-structures or
patterns within models (Stephan et al., 2012). These
patterns can ideally be used by project engineers to
facilitate analysis and assist in the development of fu-
ture MDE projects.

The last column showcases the relative amount
of user work required to accomplish model compar-
ison. This is based on our research performed for this
survey and is purely qualitative. The justification for
each tool that has one * or more can be found in the
textual descriptions provided previously. ECL and the
approach presented by Van den Brand et al. require
the most user work, however this is intentional to al-
low for more power and generality. Many approaches
require no user interaction as they operate under spe-
cific conditions or are dynamic enough to understand
the context or meta models they are working with.

5 RELATED WORK

5.1 Other Comparison Approaches

There is an abundance of work in comparing software
artifacts at the code level: However, there are many
arguments as to why these are not easily transferable
to the modeling domain (Altmanninger et al., 2009).

There are approaches that serialize models to
text, for example, XML document difference de-
tection (Cobena et al., 2002), schema-based match-
ing (Shvaiko and Euzenat, 2005), and tools like
Xlinkit (Nentwich et al., 2003), which compares XMI
representations of models. These approaches focus on
too low a level of abstraction in that they can not ac-

A�Survey�of�Model�Comparison�Approaches�and�Applications

273



Table 1: Summary of Model Comparison Approaches.

count for model-specific features such as inheritance
and cross referencing (Kolovos et al., 2006).

As discussed earlier, code clone detection tech-
niques (Roy et al., 2009) have difficulty and are un-
able to account for model-specific relations since they
are strictly textual. Also, the notion of a code clone
and model clone are quite different things.

Similarity Flooding (Melnik et al., 2002) is an
example of a labelled graph matching algorithm. It
can be seen as a similarity-based matching approach
in that it uses the similarity of an element’s neigh-
bouring nodes to discover matching elements. If two
node’s neighbours are similar, then their similarity
measure increases. The problem with this approach
is that it works on too high of a conceptual level and

is not able to use diagram- or context- specific in-
formation (Fortsch and Westfechtel, 2007). A simi-
lar problem is experienced by the method presented
by Krinke (2002) in which similar code is discovered
through program dependency graph analysis.

5.2 Related Survey Papers

This section discusses other reviews that overlap with
the model comparison review of this survey.

Altmanninger, Seidl, and Wimmer (2009) perform
a survey on model versioning approaches. This sur-
vey differs from the work done in ours in that they
focus very little on matching, investigate versioning
systems only, and discuss only a subset of the model
comparison approaches that we do. They are much
more concerned with merging than comparison.

Sebastiani and Supiratana (2008) provide a sum-
mary of various differencing approaches, however,
they look at only three specific approaches at a high
level and compare them: SiDiff, UMLDiff, DSMDiff.
This is done with a focus on how these techniques can
trace a model’s evolution.

Selonen (2007) performs a brief review of UML
model comparison approaches. It looks at five spe-
cific approaches, all of which we cover. Similar to
this survey, they also note the various usage scenarios
or applications of the approaches. In contrast, our sur-
vey looked at techniques that deal with various types
of models and included additional UML approaches
not identified by Selonen.

Finally, this paper is an updated and condensed
version of our own technical report surveying this
area (Stephan and Cordy, 2011).

6 CONCLUSIONS

Model comparison is a relatively young research area
that is very important to MDE. It has been imple-
mented in various forms and for various purposes,
predominantly in model versioning, merging, and
clone detection.

We have provided an overview of the area, and
have observed that the majority of recent approaches
allow for models belonging to arbitrary meta-models.
Similarity-based matching is the approach taken by
most methods. Model versioning appears to be the
most common goal for model comparison up to this
point, but that is starting to shift. Lastly, some ap-
proaches require more user effort to perform model
comparison, however this is to facilitate flexibility and
strength. Many of the approaches require no user in-
teraction because they are intentionally constrained or

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

274



are made to deal with multiple situations.
There is still much room for maturity in model

comparison and it is an important area that must be
in the minds of MDE supporters, as it has many ben-
efits and is widely-applicable. It is our hope that this
survey paper of model comparison acts as a refer-
ence guide for both model-driven engineers and re-
searchers.

REFERENCES

Al-Batran, B., Schatz, B., and Hummel, B. (2011). Seman-
tic clone detection for model-based development of em-
bedded systems. Model Driven Engineering Languages
and Systems, pages 258–272.

Alalfi, M. H., Cordy, J. R., Dean, T. R., Stephan, M., and
Stevenson, A. (2012). Models are code too: Near-miss
clone detection for simulink models. In ICSM, vol-
ume 12.

Alanen, M. and Porres, I. (2003). Difference and union of
models. In UML, pages 2–17.

Alanen, M. and Porres, I. (2005). Version control of soft-
ware models. Advances in UML and XML-Based Soft-
ware Evolution, pages 47–70.

Altmanninger, K., Kappel, G., Kusel, A., Retschitzegger,
W., Seidl, M., Schwinger, W., and Wimmer, M. (2008).
AMOR-towards adaptable model versioning. In MCCM,
volume 8, pages 4–50.

Altmanninger, K., Seidl, M., and Wimmer, M. (2009). A
survey on model versioning approaches. International
Journal of Web Information Systems, 5(3):271–304.

Barrett, S., Butler, G., and Chalin, P. (2010). Mirador:
a synthesis of model matching strategies. In IWMCP,
pages 2–10.

Berardi, D., Calvanese, D., and De Giacomo, G. (2005).
Reasoning on UML class diagrams. Artificial Intelli-
gence, 168(1-2):70–118.

Brun, C. and Pierantonio, A. (2008). Model differences in
the Eclipse modelling framework. The European Journal
for the Informatics Professional, pages 29–34.

Chawathe, S., Rajaraman, A., Garcia-Molina, H., and
Widom, J. (1996). Change detection in hierarchically
structured information. In ICMD, pages 493–504.

Chen, J. and Cui, H. (2004). Translation from adapted UML
to promela for corba-based applications. Model Check-
ing Software, pages 234–251.

Chen, P., Critchlow, M., Garg, A., Van der Westhuizen, C.,
and van der Hoek, A. (2004). Differencing and merging
within an evolving product line architecture. PFE, pages
269–281.

Cicchetti, A., Di Ruscio, D., and Pierantonio, A. (2007). A
metamodel independent approach to difference represen-
tation. Technology, 6(9):165–185.

Cicchetti, A., Di Ruscio, D., and Pierantonio, A. (2008).
Managing model conflicts in distributed development. In
Models, pages 311–325.

Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N.,
Meseguer, J., and Quesada, J. (2002). Maude: specifi-
cation and programming in rewriting logic. Theoretical
Computer Science, 285(2):187–243.

Cobena, G., Abiteboul, S., and Marian, A. (2002). Detect-
ing changes in XML documents. In ICDE, pages 41–52.

D’Amato, C., Staab, S., and Fanizzi, N. (2008). On the
influence of description logics ontologies on conceptual
similarity. Knowledge Engineering: Practice and Pat-
terns, pages 48–63.

Deissenboeck, F., Hummel, B., Juergens, E., Pfaehler, M.,
and Schaetz, B. (2010). Model clone detection in prac-
tice. In IWSC, pages 57–64.

Deissenboeck, F., Hummel, B., Jurgens, E., Schatz, B.,
Wagner, S., Girard, J., and Teuchert, S. (2009). Clone
detection in automotive model-based development. In
ICSE, pages 603–612.

Dijkman, R., Dumas, M., Van Dongen, B., Karik, R., and
Mendling, J. (2011). Similarity of business process
models: Metrics and evaluation. Information Systems,
36(2):498–516.

Elrad, T., Aldawud, O., and Bader, A. (2002). Aspect-
oriented modeling: Bridging the gap between implemen-
tation and design. In Generative Programming and Com-
ponent Engineering, pages 189–201.

Farail, P., Gaufillet, P., Canals, A., Le Camus, C., Sciamma,
D., Michel, P., Cregut, X., and Pantel, M. (2006). The
topcased project: a toolkit in open source for critical
aeronautic systems design. ERTS, pages 1–8, electronic.

Fortsch, S. and Westfechtel, B. (2007). Differencing and
merging of software diagrams state of the art and chal-
lenges. ICSDT, pages 1–66.

Gheyi, R., Massoni, T., and Borba, P. (2005). An abstract
equivalence notion for object models. Electronic Notes
in Theoretical Computer Science, 130:3–21.

Girschick, M. (2006). Difference detection and visualiza-
tion in UML class diagrams. Technical University of
Darmstadt Technical Report TUD-CS-2006-5, pages 1–
15.

Kelter, U., Wehren, J., and Niere, J. (2005). A generic dif-
ference algorithm for UML models. Software Engineer-
ing, 64:105–116.

Kolovos, D. (2009). Establishing correspondences be-
tween models with the epsilon comparison language.
In Model Driven Architecture-Foundations and Applica-
tions, pages 146–157.

Kolovos, D., Di Ruscio, D., Pierantonio, A., and Paige,
R. (2009). Different models for model matching: An
analysis of approaches to support model differencing. In
CVSM, pages 1–6.

Kolovos, D., Paige, R., and Polack, F. (2006). Model com-
parison: a foundation for model composition and model
transformation testing. In IWGIMM, pages 13–20.

Koschke, R. (2006). Survey of research on software clones.
Duplication, Redundancy, and Similarity in Software,
pages 1–24,electronic.

Krinke, J. (2002). Identifying similar code with program
dependence graphs. In WCRE, pages 301–309.

A�Survey�of�Model�Comparison�Approaches�and�Applications

275



Latella, D., Majzik, I., and Massink, M. (1999). Automatic
verification of a behavioural subset of UML statechart
diagrams using the SPIN model-checker. Formal Aspects
of Computing, 11(6):637–664.

Letkeman, K. (2005). Comparing and merging UML mod-
els in IBM Rational Software Architect. IBM Rational -
Technical Report (Online).

Letkeman, K. (2007). Comparing and merging UML
models in IBM Rational Software Architect: Part
7. http://www.ibm.com/developerworks/rational/library/
07/0410 letkeman/.

Lilius, J. and Paltor, I. (1999). Formalising UML state ma-
chines for model checking. UML, pages 430–444.

Lin, Y., Gray, J., and Jouault, F. (2007). DSMDiff: a dif-
ferentiation tool for domain-specific models. European
Journal of Information Systems, 16(4):349–361.

Lin, Y., Zhang, J., and Gray, J. (2004). Model compari-
son: A key challenge for transformation testing and ver-
sion control in model driven software development. In
OOPSLA Workshop on Best Practices for Model-Driven
Software Development, volume 108, pages 6, electronic.

Liu, H., Ma, Z., Zhang, L., and Shao, W. (2007). Detecting
duplications in sequence diagrams based on suffix trees.
In APSEC, pages 269–276.

Maoz, S., Ringert, J., and Rumpe, B. (2011a). Cd2alloy:
Class diagrams analysis using alloy revisited. Model
Driven Engineering Languages and Systems, pages 592–
607.

Maoz, S., Ringert, J., and Rumpe, B. (2011b). A mani-
festo for semantic model differencing. In ICMSE, MOD-
ELS’10, pages 194–203.

Mehra, A., Grundy, J., and Hosking, J. (2005). A generic
approach to supporting diagram differencing and merg-
ing for collaborative design. In ASE, pages 204–213.

Melnik, S., Garcia-Molina, H., and Rahm, E. (2002). Simi-
larity flooding: A versatile graph matching algorithm and
its application to schema matching. In ICDE, pages 117–
128.

Mens, T. (2002). A state-of-the-art survey on software
merging. TSE, 28(5):449–462.

Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S.,
and Zave, P. (2007). Matching and merging of statecharts
specifications. In ICSE, pages 54–64.

Nentwich, C., Emmerich, W., Finkelstein, A., and Ellmer,
E. (2003). Flexible consistency checking. TOSEM,
12(1):28–63.

Nguyen, T. (2006). A novel structure-oriented difference
approach for software artifacts. In CSAC, volume 1,
pages 197–204.

Oda, T. and Saeki, M. (2005). Generative technique of ver-
sion control systems for software diagrams. In ICSM,
pages 515–524.

Ohst, D., Welle, M., and Kelter, U. (2003). Differences be-
tween versions of UML diagrams. ACM SIGSOFT Soft-
ware Engineering Notes, 28(5):227–236.

Oliveira, H., Murta, L., and Werner, C. (2005). Odyssey-
vcs: a flexible version control system for UML model
elements. In SCM, pages 1–16.

Pham, N., Nguyen, H., Nguyen, T., Al-Kofahi, J., and
Nguyen, T. (2009). Complete and accurate clone detec-
tion in graph-based models. In ICSE, pages 276–286.

Reddy, R., France, R., Ghosh, S., Fleurey, F., and Baudry,
B. (2005). Model Composition - A Signature-Based Ap-
proach.

Reiter, T., Altmanninger, K., Bergmayr, A., Schwinger,
W., and Kotsis, G. (2007). Models in conflict-detection
of semantic conflicts in model-based development. In
MDEIS, pages 29–40.

Rho, J. and Wu, C. (1998). An efficient version model of
software diagrams. In APSEC, pages 236–243.

Rivera, J. and Vallecillo, A. (2008). Representing and op-
erating with model differences. Objects, Components,
Models and Patterns, pages 141–160.

Roy, C., Cordy, J., and Koschke, R. (2009). Comparison and
evaluation of code clone detection techniques and tools:
A qualitative approach. Science of Computer Program-
ming, 74(7):470–495.

Rubin, J. and Chechik, M. (2012). Combining related prod-
ucts into product lines. In 15th International Conference
on Fundamental Approaches to Software Engineering.
To Appear.

Schipper, A., Fuhrmann, H., and von Hanxleden, R. (2009).
Visual comparison of graphical models. In ICECCS,
pages 335–340.

Sebastiani, M. and Supiratana, P. (2008). Tracing the
differences on an evolving software model. http://
www.idt.mdh.se/kurser/ct3340/archives/ht08/papersRM
08/28.pdf.

Selonen, P. (2007). A Review of UML Model Comparison
Approaches. In NW-MoDE, pages 37–51.

Selonen, P. and Kettunen, M. (2007). Metamodel-based
inference of inter-model correspondence. In ECSMR,
pages 71–80.

Shvaiko, P. and Euzenat, J. (2005). A survey of schema-
based matching approaches. Journal on Data Semantics
IV, pages 146–171.

Soto, M. (2007). Delta-p: Model comparison using seman-
tic web standards. Softwaretechnik-Trends, 2:27–31.

Soto, M. and Munch, J. (2006). Process model difference
analysis for supporting process evolution. Software Pro-
cess Improvement, pages 123–134.

Stephan, M., Alafi, M., Stevenson, A., and Cordy, J. (2012).
Towards qualitative comparison of simulink model clone
detection approaches. In IWSC, pages 84–85.

Stephan, M. and Cordy, J. R. (2011). A survey of methods
and applications of model comparison. Technical report,
Queen’s University. TR. 2011-582 Rev. 2.

Stephan, M. and Cordy, J. R. (2013). Application of model
comparison techniques to model transformation testing.
In MODELSWARD. to appear.

Stevens, P. (2009). A simple game-theoretic approach to
checkonly qvt relations. Theory and Practice of Model
Transformations, pages 165–180.

Storrle, H. (2010). Towards clone detection in uml domain
models. In ECSA, pages 285–293.

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

276



van den Brand, M., Protic, Z., and Verhoeff, T. (2010).
Fine-grained metamodel-assisted model comparison. In
IWMCP, pages 11–20.

Van den Brand, M., Protic, Z., and Verhoeff, T. (2010).
Generic tool for visualization of model differences. In
IWMCP, pages 66–75.

Wenzel, S. (2008). Scalable visualization of model differ-
ences. In CVSM, pages 41–46.

Wenzel, S., Koch, J., Kelter, U., and Kolb, A. (2009). Evo-
lution analysis with animated and 3D-visualizations. In
ICSM, pages 475–478.

Xing, Z. and Stroulia, E. (2005). UMLDiff: an algorithm
for object-oriented design differencing. In ASE, pages
54–65.

A�Survey�of�Model�Comparison�Approaches�and�Applications

277


