KASTroid: A Static Taint Analysis Framework for Kotlin-Based Android
Applications

1% Bara’ Nazzal
School of Computing
Queen’s University
Kingston, Canada
21bn7@queensu.ca

Abstract—We introduce KASTroid', a static taint analysis
framework designed to detect information leakage vulnerabilities
in Kotlin-based Android applications, with a focus on insecure
usage of broadcasts. As Kotlin increasingly replaces Java as
the preferred language for Android development, ensuring the
security of inter-component communication, particularly through
broadcasts, is critical. KASTroid employs a novel static analysis
approach to identify tainted flows arising from unsafe broadcast
practices, such as the use of implicit broadcasts via sendBroadcast,
which can expose sensitive user data to unauthorized appli-
cations. We evaluated KASTroid on a dataset of 1,716 Kotlin
Android applications and found that over 70% of broadcasts
are implicit, posing significant privacy risks. To demonstrate
the framework’s effectiveness, we present a case study on a
previous version of AndroidAPS, a medical application, where
KASTroid identified unsafe broadcast usage that could leak
sensitive information to other local applications. Our findings
highlight the importance of secure broadcast practices and
demonstrate KASTroid’s ability to assist developers in detecting
and remedying such vulnerabilities.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

Smartphones have become integral to everyday life for many
people, providing convenience but also introducing potential
security risks. As the prevalence of this technology continues
to grow, it is crucial to study the security aspects of mobile
apps and ensure they comply with established security stan-
dards and guidelines.

According to a report by the Open Web Application Security
Project (OWASP), inadequate privacy controls rank as the sixth
most significant mobile risk [8]. To investigate this issue, we
focus on a particular source of vulnerabilities within Android
systems: the use of broadcast functions. In Android, broadcasts
allow messages to be sent between apps and the system
[10]. However, if a broadcast is not properly secured, other
potentially malicious applications installed on the device could
intercept the message, leading to information leakage.

To illustrate how an attack might occur, consider the exam-
ple shown in Listing 1, where an app uses a sendBroadcast
function in Line 5 to send an intent that may contain sensitive
data. A malicious app with a receiver, as demonstrated in
Listing 2, could eavesdrop on this broadcast, even if it was

'Materials and a lite version of the tool are available through a web
interface:
https://github.com/kastroid/kastroid-materials

274 Manar H. Alalfi
Department of Computer Science
Toronto Metropolitan University
Toronto, Canada
manar.alalfi @torontomu.ca

1

2

3" James R. Cordy

School of Computing
Queen’s University
Kingston, Canada
cordy @queensu.ca

Listing 1. sendBroadcast

fun send(context: Context) {
Intent().also { intent ->
intent.setAction("com.example.broadcast.
MY_NOTIFICATION")
intent.putExtra("data", "Sensitive Data.")
context.sendBroadcast(intent) }}

Listing 2. onReceive
override fun onReceive(context: Context, intent: Intent)

{
intent.takeIf { it.action == "com.example.broadcast.
MY_NOTIFICATION" }?.let {
Log.d("onReceive", "Airdroid => [${it.
getStringExtra("data")}]/${it.extras}") }}

not the intended recipient. If the broadcast transmits sensitive
information, this could result in a privacy breach for the user.

Broadcast vulnerabilities can lead to various security risks,
including intent sniffing, eavesdropping, and hijacking, partic-
ularly if a malicious app intercepts or hijacks the broadcast.
To mitigate these risks, security guidelines recommend using
LocalBroadcastManager, which confines the broadcast within
the app, or setPackage, which designates a specific recipient
package. Our research addresses these vulnerabilities in Kotlin
apps, where existing Java-based tools fall short.

The key contributions of our research are as follows:

o The first source-based static taint analysis framework for
Kotlin-based Android applications

e A curated dataset of the most popular Kotlin Android
projects from GitHub

e A taint analysis tool that identifies tainted flows and
unsafe patterns including insecure broadcast usage

o An experimental evaluation of the Kotlin dataset, reveal-
ing the prevalence of unsafe broadcast practices

In this paper, we aim to explore the following research
questions:

e RQI1: How effective is KASTroid in identifying and
analyzing tainted flows, particularly insecure broadcast
patterns such as unsafe sendBroadcast usage, in Kotlin-
based Android applications? This question evaluates
KASTroid’s core capability to perform static taint analy-
sis on Kotlin code, focusing on its capability in detecting
vulnerabilities related to inter-component communica-
tion.



o RQ2: How prevalent is the unsafe usage of broadcasts
in real-world Kotlin Android applications? This question
investigates the extent of insecure broadcast practices,
particularly implicit broadcasts, in open-source Kotlin
applications, leveraging KASTroid’s analysis on a curated
dataset.

II. BACKGROUND

There is a well-documented concern for privacy in Android
applications. Shrivastava et al. [25] reviewed 110 articles
highlighting risks of permission exploitation. Verderame et
al. [27] emphasized that many popular Google Play Store apps
violate privacy guidelines, allowing access to user private data.
These findings underscore the need for robust analysis and
vetting of Android applications for privacy concerns.

And while Kotlin is now used by 60% of Android develop-
ers, according to Google [11]. However, research and tools for
verifying and validating Kotlin apps remain limited compared
to Java. Our survey of papers from the last five years using
Web of Science, focused on security, privacy, verification,
validation, and analysis, shows a notable gap in Kotlin-related
research, as shown in Table I. In this paper, we will try to
address this gap by introducing a Kotlin analysis tool and
applying it to detect broadcast vulnerabilities.

TABLE I
WEB OF SCIENCE 2019-2024 RESULTS

Search Terms Kotlin Java Android Java Android
Security 17 918 1,935 90

Privacy 4 156 822 25
Verification 7 304 188 15

Validation 538 395 15

Static 11 382 586 42

Analysis 55 7,757 2,974 127

III. METHODOLOGY

We introduce a Kotlin analysis program, KASTroid, using
static analysis techniques. We analyze the code directly allows
for quick analysis without the need for bytecode and avoids the
need for patching existing Java analysis tools. It also allows
for traceability by linking the results to the original code.

We use TXL [6], which is a source transformation language,
to perform sink-source-based, backwards slicing of the Kotlin
app. In this context, the sources are potentially sensitive data,
while the sink represents the code locations that may leak this
data.

If there is a flow from the source to the sink that is not
properly guarded, the flow is considered fainted. We used this
concept to develop a TXL tool for analyzing Kotlin app source
code to detect potential tainted flows.

Our TXL program consists of two main components, which
are responsible for abstract syntax tree generation and flow
detection: Grammar and Transformation Rules

KASTroid takes a Kotlin source code file as input and
outputs the relevant parts of the code that contain the identified
data flows. Since no TXL Kotlin grammar was available, we

Listine 3. Examnle Source Code Innut
1 fun companionFunction () {/*...*/ }// irrelevant function
2 fun fetchPatientData(): { // Fetches patient data
from storage
3 val patientId = "PANCREAS_PATIENT"//Sensitive identifier
4 val glucoselLevel = readFromSensor() //e.g., 200 (mg/dL)
5 return "$patientId, $glucoseLevel"
6 1
7
8

fun processData() {
patientData = fetchPatientData()
encryption
9 formattedData = format(patientData)
sendToCloud("$formattedData")
11}

// formatting without

12 fun mainWorkflow() {

13 processData()

14

15 // Sends data to a remote server (sink: unencrypted HTTP)
16 fun sendToCloud(data: ) {

17 //Unsecured endpoint

18 val url = "http://insecure-api.com/upload"

19 HttpClient().post(url, data) // Hypothetical HTTP client
20

developed our own by referencing the Kotlin syntax documen-
tation [12]. The grammar, similar to a context-free grammar,
specifies the language components, ranging from non-terminal
annotations, headers, imports, and statements down to terminal
components. Correct grammar is crucial for accurate analysis,
as it defines the relationships between different components.
Our grammar was verified on a large Kotlin dataset and is also
flexible and can be modified for other static analyses tasks.

After gathering the targeted Kotlin files, we combine them
using a merger and output one combined Kotlin file. The first
step occurs when the file is processed through TXL. Using
our grammar, the tool parses the input source text according
to Kotlin’s reference syntax. If parsing fails at this step, the
process terminates and an error is returned.

If parsing is successful, the TXL transformation rules carry
out the subsequent tasks. The transformation rules for our
analysis are divided into four main components discussed in
the following subsections.

1) Sink identification: To illustrate, consider a simplified
example where the input is as shown in Listing 3, and we are
interested in tracking the function sendToCloud(). The tool
would first parse the source code and match functions that
correspond to the specified sink. In this case, line 10 would
be marked. The next step involves backward-tracing variables
and constants passed to the sink, along with tracking their
assignments within the local scope. For this example, variables
formattedData and patientData at lines 9 and 8.

2) Local backward tracing: The process begins by search-
ing for lines containing variables that influence the sink, such
as parameters or assignments. In Listing 3, line 9 would be
marked because it contains the variable formattedData , which
is a parameter for sendToCloud. The analysis then recursively
repeats for lines affecting the newly marked line; line 8 would
be marked next because it contains the variable patientData,
which is assigned to formattedData .

3) Global tracing: The next step involves examining the
remainder of the application for instances where the function
containing the sink is invoked, as well as other functions
present in the flow.



This step is carried out in the global scope. The tool marks
and tags these instances, recursively repeating the process until
all areas of the code that affect the relevant sink are tracked.
In this example, processData is invoked within mainWorkflow
at line 13. Since the function fetchPatientData is called to
assign a value to patientData, it is marked, along with its
return statement and the flow leading to it.

4) Custom rules, code cleanup, and vulnerabilities report-
ing: Additionally, if there are custom rules like ignoring flows
that are encrypted or mitigated, they are enforced, otherwise,
the flow is retained.

Finally, the tool performs a cleaning step by removing code
sections not marked as relevant to the flow towards the sink.
For example, ompanionFunction on line 1 would be removed,
as it is not part of the flow. The output, featuring the relevant
slice, is presented in Listing 4, along with the data flow
represented by the tags that illustrate the relationships between
the different variables and function calls.

Listing 4. Example Source Code Outout

<fetchPatientData called from patientData,in processData>
fun fetchPatientData():
<sourcel>val patientId = "PANCREAS_PATIENT"</>
<source2> glucoseLevel = readFromSensor() </>
<returns patientId, glucoseLevel when called>
return "$patientId, $glucoseLevel'</>

} </>
fun processData() {
<patientData assigned to formattedData>

patientData = fetchPatientData() </>
<formattedData passed to sendToCloud>

formattedData = format(patientData) </>
<sink>sendToCloud("$formattedData")</sink>

fun mainWorkflow() {
<invokes processData()> processData() </>

}

A. Static Analysis Tool Development: Overcoming Kotlin-
Specific Challenges

It should be noted that static-analysis can be susceptible to
false positives, since for example it could mark parts of the
code that are not usually executed. A finer grained analysis and
handling of control-statements and callbacks can be obtained
by introducing flow and context-sensitivity. This is explored
further by Nazzal et al [21] and Arzt et al. [2].

Compared to previous literature by Krishnamurthy et al.
[17] that showed that we are able to use Java analysis tools
with Kotlin after converting it to bytecode, we do the analysis
directly on the Kotlin code. This is because while the previous
literature showed the possibility of the analysis, it also showed
that the Kotlin bytecode is still different than Java bytecode
and would require fixes and extensions to take that into
consideration.

When developing an analysis tool for Kotlin applications,
several technical challenges must be addressed. The grammar
is responsible for parsing the code. Kotlin-specific features
such as class properties, internal modifiers, local functions,
are handled by the grammar and parsed as part of the lan-
guage syntax. For example, class properties are accessed via
getters and setters, even if not explicitly. These are considered

[ N S O S

Listine 5. Kotlin Features and Challenges
class Example {

var propertyl: = "private"

internal var property2: = "benign"
infix fun .foo(target: ) {/*...x/}
fun bar() {

propertyl foo property2 }}

statements in the language; the analysis rules takes them into
consideration when identifying the sinks and propagating the
flow, as they are considered within the program statements.

Other features in the app’s structure can be difficult to
accurately represent. For example incorporating interfaces,
which contain abstract methods and lack bodies that can be
analyzed. The default behavior is to skip these methods. To
enhance our approach, we define custom rules to identify
abstract methods and include their declarations in the analysis
flow. To preserve the structural integrity of the code, we
assign unique identifiers to variables and methods, ensuring
that the interface is correctly included and not conflated with
overridden methods.

Another challenge arises when a non-abstract class is im-
plemented without explicitly declaring a constructor. In such
cases, Kotlin automatically generates a primary constructor
with no arguments, allowing methods to instantiate objects
of that class without an explicit constructor declaration. If
this auto-generated constructor is overlooked, it may result
in gaps in the data flow, as the tool could fail to identify
the corresponding constructor. To mitigate this issue, we
preprocess the app’s code to insert empty constructors into
classes that lack them, enabling comprehensive analysis with
the default setup. Alternatively, we can leverage custom rules
to instruct the tool to mark the class directly whenever an
object of that class is instantiated.

In the following Listing 5 we showcase a code example
with unique Kotlin features. These include class properties,
an internal modifier for propertyl, an infix function that can
be called without dot or parenthesis. For KASTroid the Kotlin
grammar parses this as specified by Kotlin’s documentation.
The specified rules then can track the flow through the dif-
ferent constructions; either the TXL rules handle the features
implicitly or or explicitly. For example class properties can be
handled implicitly under the general rules relating to variable
declarations. On the other hand, an explicit TXL rule can
be added to look into infix functions calls due to its unique
syntaxt, then the rules tracks the variables to the function
implementation.

B. Detecting Broadcast Leakage

This approach can be used to test different properties by
accepting different sources, sinks, and add custom rules. In
our case, for example, to detect broadcast vulnerabilities, we
preform the following steps: Find sendBroadcast functions in
the code, track the flow and check for localbroadcastmanager
and setPackage functions which mitigates the vulnerability by
limiting the broadcast to the app itself or set a specified target
package for it. If found, the flow is considered benign. If they
are not used, then the flow is further checked to see if the data



TABLE II
RESULTS WHEN TESTING THE DATASET FOR SENDBROADCAST USAGE

FAMAZOA | Github Repos | Total
Projects 387 1329 1716
Uses sendBroadcast 80 (20%) 120 (9%) 17 (%14)
(% out of total)
Uses localbroadcastmanager 22 (%27.5) 200 (11%) 39 (%19.5)
(% out of sendBroadcast)
Uses SetPackage 2 (%2.5) 13 (%10.3) 15 (%17.5)
(% out of sendBroadcast)
Potential unsafe sendBroadcast 56 (%70) 90 (%75) 146 (%73)
(% out of sendBroadcast)

being broadcast is a sensitive source or not. If it is sensitive,
then the flow is marked for sensitive data leakage.

This answers RQ1 and demonstrates the possibility of
analyzing Kotlin apps directly using a static analysis approach,
which requires a tool that can handle Kotlin’s syntax as well
as providing rules for marking and tagging relevant data.

C. Dataset and Results

For the dataset we began with FAMAZOA [9] dataset and
augmented it with a dataset of the most popular GitHub
Kotlin repositories. FAMAZOA is described as the largest
publicly available dataset of open-source applications written
in Kotlin. It has 387 open source applications from F-Droid
AndroidTimeMachine, and AndroZoo. For the GitHub dataset
we added all of the Kotlin GitHub projects with over 500
stars, which gave us a much larger dataset containing 1,329
repositories.

To test each app, we merged the Kotlin source files in each
of the app’s folders and ran our static analysis tool on the
merged result. For the FAMAZOA dataset, we found that 283
projects did not use sendBroadcast while 80 projects did use
it. Out of the 80 projects, 22 use localbroadcastmanager and
2 use setPackage. 24 projects were initially skipped due to
parsing errors.

This means that 56 apps from this dataset could potentially
be leaking user data. To explore this further, we manually
examined these apps and what type of data is used to in
broadcasts. Our criteria for benign data is when the application
is sending publicly available data or data that is normally
accessible to any other installed app, or if if it uses sendBroad-
cast alongside localbrodcastmanager or setPackage which
mitigates the vulnerability. Otherwise if the app sends data
that is usually not publicly available or has user information,
we label it as sensitive. Overall, out of 80 apps we found 23
or around 29% to have sensitive data.

For the GitHub dataset, we found that 120 of the apps
were using sendBroadcast. Of these, 17 of them were using
localbroadcastmanager and 13 were using setPackage. The
summary of these results is given in Table II. This answers
RQ2 and shows that while a minority of apps use sendBroad-
cast, many use them with implicit intent, which is unsafe and
could potentially lead to sensitive information leakage.

IV. CASE STUDY

One noteworthy app in the Kotlin repository dataset is
AndroidAPS [1], the only medical app included. We tested

N =

~NON B W

AW -

Listine 6. AndroidAPS SendBroadcast Usage with setPackage

private fun sendBroadcast(intent: Intent) {
val receivers: List<ResolveInfo> = context.
packageManager.queryBroadcastReceivers(intent, 0)
for (resolveInfo in receivers)
resolveInfo.activityInfo.packageName?.let {
intent.setPackage(it)
context.sendBroadcast(intent)
aapsLogger.debug(LTag.CORE, "Sending
broadcast " + intent.action + "
it)

to: " +

Listing 7. AndroidAPS Unsafe SendBroadcast Usage

override fun sendCalibration(bg: ): Boolean {
val bundle = Bundle()
bundle.putDouble("glucose number", bg)
bundle.putString("units", if (profileFunction.
getUnits() == GlucoseUnit.MGDL) "mgdl" else "mmol

bundle.putLong("timestamp", System.currentTimeMillis
val intent = Intent(Intents.ACTION_REMOTE_CALIBRATION
)

intent.putExtras(bundle)
intent.addFlags(Intent.FLAG_INCLUDE_STOPPED_PACKAGES)
context.sendBroadcast(intent)

AndroidAPS version 3.1.0. Given that the security and safety
of medical device systems can have serious implications for
patient health and even life, we selected this app for our case
study. Additionally, medical devices often handle sensitive
information, making it crucial for these systems to adhere
to guidelines and standards that ensure privacy. Moreover,
the very use of a medical device can be considered private
information, highlighting the need for the application to restrict
broadcasts to known targets only. AndroidAPS serves as
the controller app for an Artificial Pancreas System (APS),
which consists of three main components: a blood glucose
sensor, known as a continuous glucose monitor (CGM), a
controller, and an insulin pump. The system can operate in
either an open-loop or closed-loop configuration. In an open-
loop system, after detecting blood glucose levels, the controller
algorithm provides recommendations for the user to manually
administer insulin. In contrast, a closed-loop system automates
this process, allowing the controller to directly send commands
to the insulin pump to deliver the appropriate insulin dosage
without user intervention.

AndroidAPS is capable of communicating with various sen-
sors and pumps and can integrate with other applications for
data sharing and remote control. The app supports plugins for
compatible glucose sensors. Based on the algorithm selected,
the app reads input from the chosen sensor, calculates the
necessary actions for the pump, and sends the corresponding
commands. Throughout this process, AndroidAPS can be
used in conjunction with optional wearables or cloud-based
applications such as Nightscout [22].

The app is primarily written in Kotlin, totaling approxi-
mately 157,000 lines of code. There are 12 instances where
sendBroadcast is used in the code. These include employ-
ing a custom DataBroadcastPlugin where sendBroadcast is
safely used with setPackage, as shown in Listing 6, and a
custom sendBroadcastMessage function that safely utilizes
LocalBroadcastManager. The app uses broadcasts for various



functionalities, such as sharing app status, transmitting battery
information, and communicating with widgets and wearable
devices. We define our sink to be the sendBroadcast function,
and we can define our sources to be any variables containing
sensitive information; in the case of AndroidAPS this includes
information relating to blood glucose, basal and bolus informa-
tion, or user private information. In one instance, the app uses
broadcast communication to interact with another application,
xDrip [7]. xDrip functions as a data hub, facilitating data
exchange between various devices and enabling intercommu-
nication among different apps, including AndroidAPS. The
sendCalibration function in AndroidAPS, shown in Listing 7,
transmits blood glucose values via a broadcast without using
setPackage or LocalBroadcastManager, thereby could expose
the data to other apps. This is considered an unsafe use of
broadcast communication, and it is recommended to explicitly
specify xDrip as the intended receiver to enhance security. We
also note that since writing this article, AndroidAPS received
multiple updates.

V. RELATED WORK

Several notable tools have been developed to analyze An-
droid applications. Wei et al. [28] introduced Amandroid,
which utilizes taint analysis by constructing data flow and
dependency graphs for security assessments. Artz et al. [2] pre-
sented FlowDroid, emphasizing precision through call-graph
analysis using the Soot framework [18]. HybriDroid, proposed
by Chen et al. [4], integrates static and dynamic analysis
to model application behavior comprehensively. Furthermore,
Khedkar and Bodden [15] employed static analysis tech-
niques to evaluate app compliance with privacy regulations,
leveraging Java’s intermediate representation. However, these
tools are predominantly designed for Java-based Android apps
and may not effectively address Kotlin-specific vulnerabilities,
such as issues related to sendBroadcast.

Chin et al. [5] previously investigated inter-application com-
munication vulnerabilities in Java-based Android apps, with
a focus on sendBroadcast. Their research identified potential
intent-based attacks, such as unauthorized reception and intent
spoofing, and introduced ComDroid, a tool for detecting these
vulnerabilities. However, ComDroid is not publicly accessible
and does not target Kotlin applications. Abdul Moiz and Alalfi
[20] examined inter-application communication vulnerabilities
in automotive apps using a static analysis tool, AAVD, based
on TXL [6], but their research was confined to the automotive
sector and did not address Kotlin-specific issues.

Krishnamurthy et al. [16] explored the limitations of apply-
ing Java taint-analysis tools to Kotlin applications, highlighting
specific challenges and suggesting possible solutions. They
introduced SecuChecl-Kotlin as an extension to support to
Secucheck and a proof of concept for the possibility of
extending Java analysis tools to Kotlin. Out of 18 identified
challenges, they proposed conceptual solutions for 8 and
implemented six of them. In comparison, our approach targets
Kotlin code directly and handles its grammar fully, not as an
extension. Using a vulnerable repository of PetClinic made by

the authors [16], our tool was able to detect the 6 flows that
are detected by SecuCheck-Kotlin. Table III shows the results
of the comparison, showing the source, sink and propagator
functions within the PetClinic app. Our tool is able to match
SecuCheck-Kotlin in detecting all the flows.

Existing static analysis tools, including SonarQube [26],
PMD [24], Polyspace [19], and CodeSonar [13], are primarily
designed to detect general code issues, such as bugs, errors,
and code smells. Our research aims to bridge this gap by
employing static analysis techniques specifically tailored to
identify privacy vulnerabilities in Kotlin applications, with a
particular emphasis on sendBroadcast-related risks. Other than
Krishnamurthy’s work, previous literature is not compatible
with Kotlin. KASTroid differs in that it can handle Kotlin code
directly and does not require executing or adding extensions
that arises from handling bytecode.

Regarding vulnerabilities, the Android broadcast mecha-
nism enables apps to communicate with the system and other
applications. Security guidelines from the CERT Android
Coding Standard [3], NowSecure Secure Mobile Development
[23], and the Japan Smartphone Security Association (JSSEC)
[14] advise against sending sensitive information via public
implicit broadcasts. Instead, they recommend using explicit
intents or restricting broadcasts to designated receivers.

VI. THREATS TO VALIDITY

Some factors may affect the validity of our study. To
our knowledge, this is the only study focused on detect-
ing broadcast vulnerabilities in Kotlin Android apps. Con-
sequently, there are no prior studies against which we can
directly compare the performance and accuracy of KASTroid.
To address this limitation, we conducted manual analysis to
evaluate the tool’s correctness and performance; however, the
lack of benchmark studies remains a potential threat to external
validity.

Another threat relates to the criteria for defining sensitive
data. In our study, we considered data not publicly acces-
sible or exposed by default as potentially sensitive. While
developers may have insight into the nature of the data being
shared and may intentionally expose some information they
deem benign, this judgment may vary. Moreover, seemingly
innocuous data can still pose security risks; for instance,
information such as the night and day status could be exploited
to infer the physical location of a user. Thus, our classification
of sensitive data may not capture all possible threat scenarios.

VII. CONCLUSION

In this research, we studied the issue of potential data
leakage arising from the unsafe use of sendBroadcast in
Kotlin Android apps. To address this, we developed a tool
which performs automatic backward slicing based on specified
sinks and rules. We compiled a dataset of publicly available
Kotlin apps by combining FAMAZOA with the most popular
Kotlin repositories from GitHub. Our analysis revealed that
sendBroadcast was used in 11% of the apps, and nearly three-
quarters (73%) of these instances were implemented unsafely,



TABLE III
COMPARISON OF TAINTED FLOW DETECTION IN CUSTOM VULNERABLE PETCLINIC REPOSITORY

Source Propagator Sink SecuCheck-Kotlin KASTroid

Flow 1 ShowOwner createQuerry singleResult v v

(OwnerController: 116) (OwnerRepositoryCustomImp: 26) | (OwnerRepositoryCustomImp: 30)
Flow 2 initUpdateOwnerForm createQuerry singleResult v v
(OwnerController: 92) (OwnerRepositoryCustomImp: 26) | (OwnerRepositoryCustomImp: 30)
Flow 3 processFindForm findByLastName(LastName) resultList v v
(OwnerController: 70) (OwnerRepositoryCustomImp: 14) | (OwnerRepositoryCustomImp: 21)
Flow 4 findOwner createQuerry singleResult v v
(PetController: 44) (OwnerRepositoryCustomImp: 26) | (OwnerRepositoryCustomImp: 30)
Flow 5 processCreationForm - merge v v
(OwnerController: 54) (OwnerRepositoryCustomImp: 38)
Flow 6 processCreationForm - persist v v
(OwnerController: 54) (OwnerRepositoryCustomImp: 41)
Legend: File and line numbers in parenthesis. v/ = Flow Detected
without employing LocalBroadcastManager or setPackage. [14] Japan  Smartphone  Security — Association  (JSSEC)  Secure
ploying 8 8
While this finding suggests potential sensitive data leakage, Coding Working Group. ~Android application secure design/secure
.. h he broad d d d b coding guidebook. https://www.jssec.org/dl/android_securecoding_en/
1t 1? 1mportanF to note t at the broadcaste at?’ cou © 4_using_technology_in_a_safe_way.html#when-sending-sensitive-
benign or publicly accessible to other apps. A detailed manual information- with-a-broadcast-limit-the-receivable-receiver-required.
examination indicated that around 23% of the apps in FAMA- Accessed: 2024-09-20. i ) .
. . .. [15] Mugdha Khedkar and Eric Bodden. Toward an Android static analysis
ZOA that used sendBroadcast were indeed leaking sensitive approach for data protection. In Proceedings of the IEEE/ACM 11th
information. International Conference on Mobile Software Engineering and Systems,
MOBILESoft ’24, page 65-68, New York, NY, USA, 2024. Association
REFERENCES for Computing Machinery.

[1] AndroidAPS. Androidaps. androidaps.readthedocs.io/. Accessed: 2024- [16] Ranjith Krishnamurthy, Goran Piskachev, and Eric Bodden. To what

09-20 ’ ps: pS- o o extent can we analyze kotlin programs using existing java taint analysis
. N . ;

[2] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan- t((j)olis ' AIn ?OZ.Z lEgE;/IZZr.zd ;n?rnag(érzl]f/Iijkmg ZCS%Hf ;gesnclégé&z)g;cze
dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick ode Anatysis an amiputation .( ). pages AR ’ .
McDaniel. Flowdroid: precise context, flow, field, object-sensitive and [17] Ranjith Krishnamurthy, Goran Piskachev, and Eric Bodden. To what
i ) L . o iy . . extent can we analyze kotlin programs using existing Java taint analysis
ifecycle-aware taint analysis for Android apps. In Proceedings of the tools? (extended version), 2022
fjﬁ?ﬂiﬂéjég:Léﬁvaeﬁfrg; oznsgfrz)ggarnNrrel;r/zgYﬁtrzlizg;a{{geUDseXg;(;z 1n4d [18] Patrick Lam, Eric Bodden, Ondrej Lhotdk, and Laurie Hendren. The soot
Association for’ Com utin’ Machiner ’ T ’ ’ framework for java program analysis: a retrospective. In Cerus Users

3] C]éRT Coordinationp Ceﬁter C]z“,]i?T Android coding  standard and Compiler Infastructure Workshop (CETUS 2011), volume 15, 2011.

e ’ . . & © [19] MathWorks. Polyspace. https://www.mathworks.com/products/
https://wiki.sei.cmu.edu/confluence/display/android/DRDO03-J.+Do+
e . . FNRTIR polyspace.html. Accessed: 2024-09-20.
not+broadcast+sensitive+information+using+an+implicit+intent. . - . P .
Accessed: 2024-09-20. [20] Abdul Moiz and Manar H. Alalfi. An approach for the identification of
[4] Hongyi Chen, Ho-fung Leung, Biao Han, and Jinshu Su. Automatic information leakage in automotive infotainment systems. In 2020 IEEE
ongy i £ &, Bl ' L . 20th International Working Conference on Source Code Analysis and
privacy leakage detection for massive Android apps via a novel hybrid . .
. Ll Manipulation (SCAM), pages 110-114, 2020.
approach. In 2017 IEEE International Conference on Communications [21] Bara’ Nazzal and Manar H. Alalfi. An automated approach for privacy
(I(.:C) » Pages 17.7’ 2017. . leakage identification in iot apps. IEEE Access, 10:80727-80747, 2022.

[5] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. . N . . .

Analvzine i IO L . . [22] NightScout. Nightscout. https://nightscout.github.io/nightscout/

nalyzing inter-application communication in Android. In Proceedings A q: 2024-09-20

of the 9th International Conference on Mobile Systems, Applications, new_user. Accessed: e .

and Services, MobiSys *11, page 239-252, New York, NY, USA, 2011 [23] NowSecure. Nowsecure  secure  mobile  development.

Association for Computin ’Machirier ’ U ’ ’ https://github.com/nowsecure/secure-mobile-development/blob/master/
[6] JR. Cordy, C.D HalI;) emgan dE Prgfnislow TxI: a rapid prototyping en/android/avoid-intent-sniffing.md. Accessed: 2024-09-20.

o oo S T ’ Ce [24] PMD. PMD. https://pmd.github.io/. Accessed: 2024-09-20.

syst'em for programming language dialects. In Proceedings. 1988 Inter- [25] Gulshan Shrivastava, Prabhat Kumar, Deepak Gupta, and Joel JPC Ro-

7] ;{;tlﬁgﬁi)ﬁonf e]gzﬁizaot?ofomp uter L:lr;gr?ages, pagesh%tSOS—‘/ZléﬁiStildg Sc%m / drigues. Privacy issues of Android application permissions: A literature

N'g ) . . . P psig ’ review. Transactions on Emerging Telecommunications Technologies,
ightscoutFoundation/xDrip. Accessed: 2024-09-20. 31(12):e3773, 2020
[8] The OWASP Foundation. Owasp mobile top 10. https://owasp.org/ ) € ’ . . o .
. . . [26] SonarSource.  Sonarqube.  https://www.sonarsource.com/products/
www-project-mobile-top-10/. Accessed: 2024-09-20. bel. A d: 2024-09-20
[9] Bruno Géis Mateus and Matias Martinez. An empirical study on quality sonarqube/. Accessed: e .
; . L . . . L [27] Luca Verderame, Davide Caputo, Andrea Romdhana, and Alessio Merlo.
o A.ndrqd applications written in Kotlin language. Empirical Software On the (un)reliability of privacy policies in Android apps. Tn 2020
Engineering, Jun 2019. . o . International Joint Conference on Neural Networks (IJCNN), pages 1—
[10] Google. Android  developers -  broadcasts  overview. 9. 2020
https://developer.android.com/develop/background- work/background- ; ) . L .
tasks/broadcasts. Accessed: 2024-09-20. [28] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. Amandroid:
. - . . . A precise and general inter-component data flow analysis framework
[11] Google. Android developers - Kotlin. https://developer.android.com/ for security vetting of Android apps. In Proceedings of the 2014
kotlin. Accessed: 2024-09-20. ' Lo" .
[12] Google. Kotlin docs - grammar. https://kotlinlang.org/docs/reference/ ACM SIGSAC Conference on Computer and Communications Security,

[13]

grammar.html. Accessed: 2024-09-20.
GrammaTech. Codesonar. https://www.grammatech.com/codesonar-cc.
Accessed: 2024-09-20.

CCS ’14, page 1329-1341, New York, NY, USA, 2014. Association for
Computing Machinery.



