
Metaprogramming is the process of specifying generic
software templates from which classes of software components,
or parts thereof, can be automatically instantiated under
direction of a formal design model to produce new software
components. In the µ* system [Cordy92], metaprograms are
specified using an annotated by-example style accessible to
ordinary programmers of the target programming language.
Annotations in the form of Prolog-like predicates specify the
design conditions under which different parts of the source
template are to be instantiated. Instantiation of a source
component is then done by providing a design model as a
database of Prolog facts from which the design conditions can
be evaluated and source component instances automatically
generated using Prolog-style deduction.

The implementation of µ* is interesting in the context of this
workshop because it is entirely done using the source
transformation language TXL [Cordy91,04]. The
implementation is achieved in a two stage process in which
metaprograms are first translated by source transformation into
equivalent TXL programs. These TXL programs are then run
with input from a design database to implement instantiation of
the metaprograms and generate instantiated source code by
source transformation. In essence, this implementation is a
second order source transformation.

1. µ* : A Family of Metalanguages

µ* (pronounced "mew-star") is a family of by-example
metaprogramming languages that share a common metanotation
and implementation. The philosophy of the family is exactly
the ideal: the metaprogramming language for each target
language consists of the target language itself, augmented with
meta-annotations specifying conditions in the design database.
For example, µC, the metalanguage for C, consists of C program
syntax, optionally annotated with meta-annotations. The syntax
of meta-annotations is the same across all target languages. In
each case, the syntax of the basi c metalanguage is the syntax of
the language itself, and the syntax of the meta-annotations is the
syntax of µ*. The target language can be any programming or
specification language with a formal syntax.

2. By-example Metaprogramming

In µ*, every program written in a target language is a
metaprogram unconditionally generating itself. Thus every C
program is automatically a µC program, and every Prolog
program is a µProlog program. Syntactically contained
program fragments (for example, declarations, statements, and
so on) are also in general metaprograms for themselves.

The addition of meta-annotations to a metaprogram attaches
the metaprogram to the design database and makes generation of

the annotated parts conditional on the facts in the database. The
range of affected code dependent on a design condition is
denoted by enclosing it in backslashes, followed by the meta-
annotation and a double backslash to mark its end, as shown in
Figure 1. The backslash is the only symbol reserved by µ* it
can be replaced with any other single symbol.

Because in many cases the intended role of the affected area
in the target source is ambiguous, the role must be given
explicitly following the bracketed area, as shown in Figure 1.
The role is the name of the intended part of speech in the target
language reference syntax (that is, the common name of the
entity in the target language, for example statement or
declaration in C) enclosed in square brackets [].

3. Generative Metaprograms

The µ* annotation language provides two basic operations:
when, which includes a section of target source conditionally on
the provability of a predicate on the database, and each, which
generates one copy of the section of target source for every
solution to a predicate in the design database (Figure 2). These
two operations can be nested to give complex combinations of
conditional generation.

The database is searched for solutions to each annotation
predicate. When a solution is found, the metavariables in the
predicate are bound to the terms found in the solution in the
design database. The metavariables can then be instantiated in
the target source generated for that solution. Repeated instances
of a metavariable in a predicate specify unification in the usual
Prolog way, so the predicate function(F[id]) and returns(F,int)
specifies only those entities that are functions in the design that
return the type int. Figure 2 shows an example specifying a µC
metaprogram to generate external C routine declarations for
every function entity in a design database.

When programmers write code templates, they often use a
pseudo-code style in which descriptive identifiers take the place

Metaprogram Implementation by Second Order Source Transformation
James R. Cordy*

Medha Shukla Sarkar†
School of Computing, Queen’s University

Kingston, Ontario, Canada K7L 3N6
cordy@cs.queensu.ca, msarkar@mtsu.edu

const char *strsignal(int n)
{
 static char
 buf[sizeof("Signal ")+1+INT_DIGITS];
\
 if (n>=0 && n<NSIG && sys_siglist[n]!= 0)
 return sys_siglist[n];
 sprintf(buf,"Signal %d",n);
\ [statement*]
 when listing
\\
 return buf;
}

Figure 1. Trivial Example µC Metaprogram.

The if and sprintf statements enclosed in backslashes are
conditionally included in instances of the metaprogram only if
“listing” is a design fact in the design database.

* Author’s present address: ITC-IRST, Trento, Italy.
† Author’s present address: Middle Tennessee State University, U.S.A.

of sections to be filled in later. µ* provides this same feature by
allowing metavariable identifiers to take the place of any part of
a target source fragment enclosed in backslashes, and by
allowing later refinement of the role and source text of the
metavariable, either as part of the solution to a predicate, or by
using a where clause.

A where clause is a nested metaprogram that generates a
target source fragment and binds it to a metavariable for use in
other parts of the metaprogram, for example, the main source
text. While in this position paper we do not have room for
realistic examples, the nested combination of when, each, and
where with Prolog-style predicate solution and unification on
design databases gives µ* great power and flexibility while
retaining the by-example nature of metaprogram templates. It
has been used to specify and generate complex code artifacts in
C, Prolog and Turing using design databases describing
production software interfaces such as OpenGL.

4. Implementation of µ* Using TXL

µ* is implemented using the TXL source transformation
language [Cordy91,04] by translating each µL metaprogram for
a target language L to a corresponding TXL source
transformation ruleset using TXL source transformation. The

generated TXL ruleset is then combined with reference
grammars for the target language L and Prolog to create a TXL
program that implements the instantiation of the µL
metaprogram from a design database of Prolog facts, as shown
in Figure 3. The translation of µL metaprograms to
corresponding TXL metaprograms is itself achieved using a
source transformation specified and implemented in TXL. In
essence, this implementation is simply a second order source
transformation interpretation of the original µL metaprogram.

The purpose of this position paper is to introduce and
explore the possibility of generalizing this technique to the
wider implementation of metaprogramming systems using
source transformation tools. While in this application the
technique is driven by an entity-relationship design database in
Prolog form, there is no fundamental reason why the design
model could not be represented in any other design notation,
including those based on UML [OMG03]. And while the
particular source transformation system used here is TXL, there
is no reason why the technique would not work with other tools.

References.

[Cordy92] J.R. Cordy and M. Shukla, "Practical
Metaprogramming", Proc. CASCON'92, IBM Centre for
Advanced Studies Confernece, Toronto, November 1992, pp.
215-224.

[Cordy91] J.R. Cordy, C.D. Halpern and E. Promislow,
"TXL: A Rapid Prototyping System for Programming Language
Dialects", Computer Lang. 16,1 (January 1991), pp. 97-107.

[Cordy04] .J.R. Cordy, "TXL - A Language for Prog-
ramming Language Tools and Applications", Proc. LDTA 2004,
ACM 4th International Workshop on Language Descriptions,
Tools and Applications, Barcelona, Spain, April 2004, pp. 1-27.

[OMG03] Object Management Group, http:/www.omg.org,
Unified Modeling Language Specification v1.5, March 2003.

\
 extern FType F();
\ [declaration*]
 each function(F[id])
 and returns(F,FType[type])
\\

Figure 2. Trivial Generative µC Metaprogram.

The interpretation is that a sequence of declarations is to be
generated, one for each “function” entity in the design
database. Unification on design facts finds the associated type
automatically from the “returns” design fact.

µ* Grammar µ* → TXL
TXL Rules

TXL Metaprogram
TXL Rules

(1) L Reference
Grammar

 µL
Metaprogram

Prolog
 Grammar

TXL

(2)

Prolog
Database

Instantiated
L Program

(3)

µL Prototype System

Figure 3. Implementation of µ* Using TXL.

A TXL source transformation is used to translate µL metaprograms to TXL transformation rules for a target language L (1). The
result is combined with standard reference grammars for L and Prolog to give a complete TXL program (2), which is then run with a
Prolog form entity-relationship design database as input. The design database is transformed by the TXL program to a target
language L instantiation of the µL metaprogram (3). The entire process is very efficient, running in seconds on practical examples.

