
Evolving TXL
Adrian Thurston and James R. Cordy

Software Technology Laboratory, School of Computing
Queen's University, Kingston, Ontario, Canada

Introduction

• TXL originally designed for small program transformation tasks
• Aid in the development of the Turing Programming Language

• Developers are writing larger TXL programs
• Multiple developers involved in projects
• Application domain has grown
• TXL is now used for problems unforeseen during original design
• Want to improve TXL in response to these changes
• Cater to existing users and hope to gain new users

Design Goals

• Enable modularity and abstraction
• Introduce general purpose language features
• Increase expressiveness
• Minimize the use of globals variables
• Support TXL's unique paradigms

Nine New Features

+ TXL = ETXL

Approach

Must Matching Rules

• Rules that fail to make a match silently return the original tree
• In most cases this is the desired behaviour

• Sometimes a rule is written such that it is expected to match
• Examples:

• Patterns that involve necessary conditions for semantic
 legality
• Multi-stage transformations

• Onus is on the programmer to verify that these rules are actually
 matching

• Whether or not these rules actually match often goes unchecked

• Whether or not a rule is to always match is a static property

• Should be expressible in the language
• Prepend the must keyword to a replace clause
• Enables the TXL engine to verify that the rule is indeed matching

• If a must matching rule fails to match a run-time error is raised

Objectless Rules

• TXL has two kinds of rules
•Replacing rules

•Matching-only rules

rule reverse
 replace $ [pair]
 N1 [number] N2 [number]
 by
 N2 N1
end rule

rule consecutive
 match [pair]
 N1 [number] N2 [number]
 construct Diff [number]
 N1 [- N2]
 deconstruct N1
 1
end rule

• Sometimes it is not necessary to use the main pattern of a rule
• One simply wants to program a sequence of operations
• These rules are neither replacing nor matching rules
• One uses a match any clause in place of the main pattern

function checkErrorsCount
 match [any]
 _ [any]
 import SyntaxErrs [number]
 0
end rule

• We have added objectless rules which do not require a match or
replace clause

Strong Typing

• A rule may succeed from different tree roots, but ...
... be a valid transformation from only one root
• Want to communicate this restriction on application in the

language
• Environments where code is maintained by several programmers
• Compiler enforcement

function checkErrorsCount
 import SyntaxErrs [number]
 0
end rule

Solution:
• Strong typing allows the programmer to specify an exclusive type
 to which a rule may be applied
• Application of a rule to the wrong type generates a compile-time
 error

Out Parameters

• Cannot return data from a rule without using globals or the
 primary pattern
• Not possible to define an abstraction layer between code that
 needs to deconstruct a tree and code that does the deconstruction.

Solution:
• Allow rules to return values
• Can create rules that function as patterns
• Analogous to abstracting away code by pushing it into a function
 call

[statement]

[assignment_expr] ;

[declaration]

[type] [name] [init] ;

x = [function_call] int x = [function_call]

max ([expr] , [expr])

y z

max ([expr] , [expr])

y z

Solution:
• Permit a rule to be nested in another
• Implicit access to variables declared in an ancestor
• No need to plan ahead what to propagate
• Reduced need for editing of parameter lists

Additional Benefit:
• Nested rules allow the programmer to group code at the task level

Modularity

• TXL programs have grown
• Multiple developers have become involved in single projects
• Some mechanism for information hiding becomes necessary

Currently:
• Modularity features can be emulated by naming conventions
• Emulation leaves much to be desired
• Instead some modularity features should be incorporated into the

language

Allow Programmers To:
• Independently maintain sections of code without being concerned

about name collisions.
• Hide internals
• Define reduced abstraction interfaces

Solution:
• New modularity statement
• Grammar definitions, rules and global variables may have their

names encapsulated in a module statement
• Entities are private by default and may be made public

function meetsPrefixCriteria ClassKey [class_key]
 ClassId [id] OptBase [opt base_clause]
 FuncDeclSpec [repeat decl_specifier]
 FuncId [id]
 ...
end function

rule prefixInFunc ClassKey [class_key] ClassId [id]
 OptBase [opt base_clause]
 FuncDeclSpec [repeat decl_specifier] FuncId [id]
 replace $ [init_declarator]
 Id [id] OptInit [opt initializer]
 where
 Id [meetsPrefixCriteria ClassKey ClassId
 OptBase FuncDeclSpec FuncId]
 by
 ClassId [_ FuncId] [_ Id] OptInit
end rule

rule prefixInClass ClassKey [class_key] ClassId [id]
 OptBase [opt base_clause]
 replace $ [function_definition]
 FuncDeclSpec [repeat decl_specifier]
 FuncDeclarator [declarator]
 FuncBody [function_def_body]
 deconstruct * [id] FuncDeclarator
 FuncId [id]
 by
 FuncDeclSpec FuncDeclarator
 FuncBody [prefixInFunc ClassKey ClassId
 OptBase FuncDeclSpec FuncId]
end rule

rule prefixLocals
 replace $ [class_specifier]
 ClassKey [class_key] ClassId [id]
 OptBase [opt base_clause]
 { MemberSpec [opt member_specification] }
 by
 ClassKey ClassId OptBase
 { MemberSpec [prefixInClass
 ClassKey ClassId OptBase] }
end rule

Rule Parameters

• Traversals and pattern matching are independent processes
• Should be expressing them independently
• Custom tree traversal is specified by manually programming rule
 applications from within replacements
• Traversals and pattern matching are closely tied together

Solution:
• Separate traversals and pattern matching with rule parameters
• Write the traversal
• Parameterize it by the rules to apply

Type Parameters

• Parse tree structure and parse tree types are indepenedent
 constructs
• Several types can share the same basic structure
• An ability to specify operations on a structure independent of the
 specific types involved is desirable
• Examples: list reversal, sorting, walking of homogeneous trees

Solution:
• Type parameters enable this abstraction
• Write the operation on the structure
• Parameterize it by specific types

Pattern Parameters

• Combining out parameters with rule parameters gives pattern
 parameters
• Allows one to define a rule parameter that is expected to return a value

function findLeft Key [id]
 match [tree]
 NodeKey [id] NodeVal [id]
 Left [tree] Right [tree]
 where
 Key [< NodeKey]
 where
 Left [find Key]
end function

function findRight Key [id]
 match [tree]
 NodeKey [id] NodeVal [id]
 Left [tree] Right [tree]
 where
 Key [> NodeKey]
 where
 Right [find Key]
end function

function findHere Key [id]
 match [tree]
 NodeKey [id] NodeVal [id]
 Left [tree] Right [tree]
 where
 NodeKey [= Key]
end function

function find Key [id]
 match [tree]
 Tree [tree]
 where
 Tree
 [findLeft Key]
 [findRight Key]
 [findHere Key]
end function

If Clauses

• As complexity increases, programming mutual exclusion gets harder
• Want a native branching clause that is

• Familiar to programmers

• Easy to use

function find Key [id]
 match [tree]
 NodeKey [id] NodeVal [id]
 Left [tree] Right [tree]
 if where
 Key [< NodeKey]
 then where
 Left [find Key]
 else if where
 Key [> NodeKey]
 then where
 Right [find Key]
 else construct _ [id]
 NodeVal [print]
 end if
end function

rule genericReplace PatternParam [rule : [id] [expression]]
 replace $ [statement]
 Stmt [statement]
 where
 Stmt [PatternParam : Id [id] Expr [expression]]
 by
 Id [_ 'set] '(Expr ') ';
end rule

Nested Rules

• Tree traversals often require the propagation of data down the tree
• Normally implemented by pausing a traversal, collecting data, then
 passing the data down to deeper parts of the traversal using
 parameters
• Can result in exessive parameter passing

1. Must Matching Rules
2. Objectless Rules
3. Strong Typing
4. Nested Rules
5. Rule Parameters
6. Type Parameters
7. If Clauses
8. Out Parameters
9. Modularity

