Proc. IEEE International Conference on Computer Languages, New Orleans, March 1990.

Specification and Automatic Prototype
Implementation of Polymorphic Objects in TURING
Using the TXL Dialect Processor*

James R. Cordy
Eric Promislow

Department of Computing and Information Science
Queen's University at Kingston
Kingston, Canada K7L 3N6

Abstract

Object-oriented dialects of existing programming
languages are often implemented using a preprocessor
that translates from the dialect to an equivalent program
in the original programming language. Unfortunately, the
nature of the preprocessing done by these
implementations is hidden in the ad-hoc algorithms of the
preprocessors themselves except as demonstrated by
examples. This paper describes an attempt to catalogue
and generalize these syntactic transformations using a
simple set of applicative transformation rules expressed
in the TXL dialect description language. Example
transformation rules for implementing object types and
parametric polymorphism in an object-oriented dialect of
the Turing programming language are given in the paper.
These rules easily generalize to other languages of the
Pascal family and have been used to automatically
implement Objective Turing.

Introduction

Object-oriented dialects of existing programming
languages such as C are commonly prototyped using a
preprocessor that translates from the object-oriented
dialect to the base language. This was the case, for
example, for C++ [1] and Objective C [2]. However, the
nature of the preprocessing done by these
implementations is often hidden in the ad-hoc algorithms
of the preprocessors themselves, and is at best exposed
by a few simple examples of the results of the
preprocessing.

The Objective Turing project is an attempt to rectify this
situation by explicitly specifying each key feature of
object-oriented programming as a context-sensitive
syntactic transform to the (non-objective) Turing
programming language [3] using the TXL dialect
specification language [4]. By specifying each feature

* This work was supported by the Natural Sciences and
Engineering Research Council of Canada.

using an independent TXL transformation rule which
clearly and compactly encodes the necessary syntactic
transforms, we can compile a reference catalog for
preprocessor implementation of object-oriented features
that can be used to guide future preprocessor
implementations for other languages.

This paper introduces the TXL dialect specification
language and gives a complete set of applicative
transformation rules to implement polymorphic object
types as a dialect of Turing. These rules have been used
to automatically implement Objective TURING using the
TXL dialect processor.

The TXL Dialect Processor

TXL, the Turing eXtender Language [4] is a system
designed to allow easy description and automatic
prototype implementation of new programming language
features as dialects of an existing programming language
such as Turing. The goal of TXL is to provide some
measure of the power and flexibility of interpretive
extensible languages for traditional Pascal-like compiled
languages. TXL uses a context-sensitive syntactic
transformation algorithm that is not limited by the
constraints typical of other preprocessors and extensible
languages, and is driven by a concise, readable dialect
specification language that conveniently expresses the
syntax and semantics of new language features.

Using Turing (or any other language) as a base, TXL
provides the ability to describe new language dialects at a
very high level, and automatically provides prototype
implementations. Each dialect is described in two parts,
the context-free syntactic forms (described in terms of the
syntactic forms of the base language using a BNF-like
notation), and the run time model of the dialect (expressed
as a set of applicative syntactic transformations to the
base language). The TXL Processor uses these
descriptions to automatically transform dialect programs to
programs in the base language.

The syntactic forms of the base language are described
using the same BNF-like notation used to describe
syntactic forms of the dialect. These base language
syntactic forms serve as a data base of syntactic forms
used to describe the syntax of the dialect. For example,
the syntactic forms of the Turing language base include
the forms declarationsAndStatements, variableRefer-
ence, assignment, and so on. The semantics of the
dialect are described as a set of recursive context-
sensitive transformations from the syntactic structures of
the dialect to base language structures.

As a simple example dialect, consider the addition of
coalesced assignment short forms (i.e., the "+=", "—="
etc. of C) to the Turing language. The desired syntactic
forms can be described in terms of the Turing base forms
as a replacement of the statement syntactic form to
include the original Turing statements plus a new form
we call coalescedAssignment (Figure 1).

The new definition of the statement syntactic form
replaces the original Turing form in the grammar of the
dialect, so that the dialect includes all of original Turing
plus the new coalesced assignment statement. The form
of the coalesced assignments themselves is described
using the new syntactic form coalesced Assignment and
its sub-form coalescedOperator.

The meaning of the new syntactic form is described
using a transformation to equivalent Turing base
language code. In this case, for example, the
transformation rule would change the coalesced
assignment a +=b to the semantically equivalent Turing
statement a:=a+ (b).

Transformation is achieved by applying the
transformation rules to the abstract syntax tree of each
dialect language program. For example, the main
transformation rule of the coalesced assignment dialect
(figure 1) specifies that in each subtree below a
statement node, any subtree matching the pattern
variableReference coalescedOperator = expression
should be replaced by another statement subtree
containing the assignment statement V := V Op (E)
where V, Op and E are the original subtrees for the
variableReference, coalescedOperator and expression
matched by the pattern.

Objective TURING

Turing [3] is a new general purpose programming
language in the tradition of Pascal. In addition to the
features provided by Pascal, Turing provides other
modern programming features such as encapsulation
using modules, varying-length character strings, type-
safe variant records, safe dynamic storage and pointers,
parametric procedures, and run-time constants. Turing
does not however provide any object-oriented features
such as object types, polymorphism, inheritance or
dynamic binding.

% Trivial coalesced assignment dialect;
% allows a+=b etc.

% Part 1: Syntactic forms

define statement % replaces Turing base
% syntactic form of same name
choose
[coalescedAssignment] % new dialect
% statement form
[assignment] % original Turing
[assert] % statement forms
[get]
end define
define coalescedAssignment
order
[variableReference]
[coalescedOperator] = [expression]
end define

define coalescedOperator
choose + - */
end define

% Part 2: Semantic transformations

rule replaceCoalescedOperators
replace [statement]
V [variableReference]
Op [coalescedOperator] = E [expression]
by
V=V Op (E)
end rule

Figure 1. TXL Description of a Simple Coalesced
Assignment Dialect.

In Part 1, the syntactic forms of the dialect are described
using a BNF-like notation in which the keyword order
indicates sequence and the keyword choose indicates
alternation. The dialect syntactic forms are integrated into
the base language grammar by replacing an existing base
language syntactic form with a new form. In the above
example, the new form of statement replaces the original
Turing syntactic form of the same name in the dialect
grammar.

In Part 2, the semantics of the dialect are described using
a set of rules that transform the syntactic forms of the
dialect to semantically equivalent base language
structures. In this case, every occurrence of a statement
containing the dialect syntactic form coalescedOperator is
transformed to an assignment statement using the
corresponding Turing operator.

Modules and Information Hiding

One feature of object-oriented systems that the Turing
language already provides is information hiding in the
form of modules. Turing modules collect a set of data
structures and the procedures that manipulate them into
a single opaque package. Only the exported attributes of
the module can be accessed from outside it. From an
object-oriented point of view, a Turing module is a single
instance object, and its exported procedures are the
methods of the object. Figure 2 shows an example of a
Turing stack module.

Although we will use them as a vehicle to implement
object types in this paper, modules are not a prerequisite
for the transformations presented. Because the
information hiding provided by modules can itself be
expressed as a syntactic transform to procedures and
records [5], our transformations are easily extended to
apply to languages without modules such as Pascal.

module stack
import (error)
export (push, pop)

const maxdepth := 100
var storage : array 1 .. maxdepth of int
var depth : 0 .. maxdepth

procedure push (e : int)
if depth <= maxdepth then
depth := depth + 1
storage (depth) := e
else
error ("stack overflow")
end if
end push

procedure pop (var e : int)
if depth > 0 then
e .= storage (depth)
depth := depth - 1
else
error ("stack underflow")
end if
end pop

depth :=0
end stack

Figure 2. A Stack Module in Turing.

Object Types

The distinction between Turing modules and true objects
is that modules are not first-class types and can not be
used as the type of variables, parameters and so on. The
obvious way to add objects to Turing, then, is to allow
modules to be types. Using such an extension, the stack
module could be used as the body of a type declaration
and the resulting type used to declare instances (figure 3).

Since we intend to extend rather than modify Turing, our
syntax will explicitly use the keyword object in place of
module for module types. This additional syntactic form
can be expressed in TXL by replacing the Turing base
syntactic form typeSpec with an extension that adds object
types :

define typeSpec

choose
[objectType] % added new syntactic form
[standardType] % original Turing
[arrayType] % type spec syntactic forms
[namedType]
end define

define objectType
order
object
[importList]
[exportList]
[moduleBody]
‘end [id]
end define

The syntactic forms importList, exportList and moduleBody
used to specify the objectType syntactic form are inherited
from the Turing base grammar.

This syntactic specification is deceptively simple.
However, its semantics have no direct reflection in Turing,
and the problem of transforming objectTypes into
equivalent Turing programs will involve several steps,
each specified using a TXL transformation rule. Overall,
the transformation we will be specifying works as follows:

Every declaration of an objectType in the dialect program
will be transformed into a Turing module with the same
body. The internal variables of the object type will be
gathered together into a data record type that will be
exported from the module. Global (initializing) statements
of the object type will be gathered into an initializing
procedure for object data records that will also be
exported. Each exported procedure (method) of the object
type will be transformed to take an extra parameter of the
data record type, representing the private data of the
calling object instance.

type stack :
object
import (error)
export (push, pop)

. same body as the Stack
module of figure 2 . ..

end stack

var stackl : stack
var stack?2 : stack

stackl.push (5)
stackl.push (7)

stack? := stackl
object

% assign entire stackl

% to
stack?2
var x . int
stack2.pop (x)
assert x=7

Figure 3. A Stack Object Type in the Objective Turing
Dialect and Example Instances.

In the scope of the object type's declaration, each
variable declaration of the object type will be replaced by
a variable declaration of the exported data record type
followed by a call to the initializing procedure. Finally, all
calls to procedures (methods) of the variable instance will
be transformed into calls to the corresponding
procedures of the module, passing the instance's data
record as an extra argument.

The transformation is governed by a mainRule that
simply serves to get things started, since for efficiency
reasons TXL limits the extent of a rule's pattern search to
a specified scope of the abstract syntax tree. This main
rule simply says that the rule fixObjects should be
applied to every scope of the program.

rule mainRule
replace [declarationsAndStatements]
P [declarationsAndStatements]
by [declarationsAndStatements]
P [fixObjects]
end rule

Step 1. Convert Object Types to Modules.
The rule fixObejcts syntactically converts each object

type declaration to a Turing module and specifies the
scopes in which several sub-rules are to be applied.

rule fixObjects
replace [declarationsAndStatements]

type ObName [id] :
object
Oblmport [importList]
ObEXxport [exportList]
ObBody [declarationsAndStatements]
‘end ObName
RestOfScope [declarationsAndStatements]

by [declarationsAndStatements]

module ObName
Oblmport
ObExport [addObjectAndInitializerExport]
ObBody
[sortDeclarationsAndStatements]

[makeObjectRecordTypeAndEnterFields]
[makeObijectlnitializerProcedureAndEn-

terStatements]
[addObjectParameterToProcedures]
‘end ObName
RestOfScope

[transformObjectReferences ObName]
end rule

The rule states that in each scope containing a type
declaration of an objectType, the declaration should be
replaced by a module with the same import list, export list
and body as modified by several other rules, and that the
rule transformObjectReferences should be applied to the
scope of the type declaration itself.

Step 2. Add Exported Names for the Object Data
Record Type and the Object Initializer
Procedure.

The rule addObjectAndInitializerExport adds two new
names to the list of identifiers exported from the module:
the name of the object data record type, DataRecordType,
and the name of the object data record initializer
procedure, InitializeDataRecord. These names need not
be unique since they are hidden inside a Turing module. If
unique names were needed, the gensym TXL primitive
would be used to generate them.

rule addObjectAndinitializerExport
replace [exportList]
export (First [id] Rest [repCommald])
by [exportList]
export (DataRecordType,
InitializeDataRecord, First Rest)
end rule

The missing comma between First and Rest in the export
list is not an error. The Turing base grammar uses the
recursive production repCommald to specify any number
of repetitions (including zero) of a comma followed by an
identifier. Because application of this rule is bound (by
the fixObjects rule) to the export list of the object module,
it will match only that one export list.

Step 3. Sort the Declarations and Statements in
the Object Module.

The Turing programming language allows interspersing
of declarations and statements in a scope. In particular,
variable declarations, procedures and initializing
statements in a module body may be arbitrarily
intermixed. In order to create a record type containing all
the private variables of the object, and the initializing
procedure for object data records, the module body must
be re-ordered to gather all variable declarations and all
initializing statements together. (This does not change
the semantics of the module.) The following rules specify
the re-ordering.

rule sortDeclarationsAndStatements
replace [declarationsAndStatements]
ObBody [declarationsAndStatements]
by [declarationsAndStatements]

ObBody
[sortDS] % declarations before statements
[sortTV] % constants and types before
% variables and procedures
[sortVP] % then variables, then procs
end rule
rule sortDS

replace [declarationsAndStatements]
S [statement]
D [declaration]
R [declarationsAndStatements]
by [declarationsAndStatements]
D
S
R
end rule

rule sortTv
replace [declarationsAndStatements]
V [variableOrSubprogramDeclaration]
T [constantOrTypeDeclaration]
R [declarationsAndStatements]
by [declarationsAndStatements]
T
Y
R
end rule

rule sortvVP
replace [declarationsAndStatements]
P [subprogramDeclaration]
V [variableDeclaration]
R [declarationsAndStatements]
by [declarationsAndStatements]
\Y,
P
R
end rule

Each of these sub-rules specifies a bubble sort that
bubbles up instances of one kind of declaration or
statement before another. For example, the sortDS rule
specifies that every occurrence of the pair (statement,
declaration) should be replaced by the same pair in
reverse order. This rule is repeatedly applied until there
are no more occurrences of the misordered pair it is
looking for in its scope of application (the body of the
object module). Although it is tempting to think of TXL
rules as algorithmic, they are in fact applicative and can be
applied any time their pattern matches any subtree in their
scope of application.

Step 4. Gather the Object Module's Private
Variables into the Object Data Record Type.

As the object module's variable declarations are grouped
together by the sorting rules, they can be gathered into a
new record type. This type will be used as the type of an
additional parameter to each procedure of the module
giving the data fields of the object instance associated with
each call. The transform has two parts: first a new empty
record type declaration is inserted before the first variable
in the scope, then each variable declaration is moved in as
a field of the record type. These two steps will necessarily
happen in sequence since the pattern of the second rule
will never match until the first rule has been successfully
applied.

rule makeObjectRecordTypeAndEnterFields
replace [declarationsAndStatements]
ObBody [declarationsAndStatements]
by [declarationsAndStatements]
ObBody
[makeObjectRecordType]
[enterObjectRecordTypeFields]
end rule

rule makeObjectRecordType
replace [declarationsAndStatements]
V [variableDeclaration]
Rest [declarationsAndStatements]
by [declarationsAndStatements]

type DataRecordType :
record
‘end record
\
Rest
end rule

rule enterObjectRecordTypeFields
replace [declarationsAndStatements]
type DataRecordType :
record
R [repRecordField]
‘end record
var V [id] : T [typeSpec]
RestOfScope [declarationsAndStatements]

by [declarationsAndStatements]
type DataRecordType :
record
V:T
R
‘end record
RestOfScope [fixObjectVariableReferences V]
end rule

Step 5. Change References to the Object's
Private Variables to Reference the Data Record
Parameter of the Object Procedures.

As each private variable is moved into the object's data
record type by the enterObjectRecordTypeFields rule, all
internal references to it are changed to refer to the
corresponding field of the data record parameter of the
procedure containing the reference. This rule is
parameterized by the identifier of the variable whose
references are being transformed.

rule fixObjectVariableReferences Var [id]
replace [id]
Var
by [reference]
DataRecord . Var
end rule

Step 6. Gather the Object Module's Initializing
Statements into the Object Data Record
Initializer Procedure.

Since the sorting rules gather the initializing statements
together at the end of the module's scope, creating the
initializer procedure is relatively straightforward. The rule
makeObjectlinitializerProcedureAndEnterStatements
simply grabs everything from the first statement to the
end of the sorted body and puts it in a new procedure
named InitializeDataRecord.

rule makeObjectlnitializerProcedureAndEnterStatements
replace [declarationsAndStatements]
P [subprogramDeclaration]
S [statement]
Rest [declarationsAndStatements]
by [declarationsAndStatements]
P
procedure InitializeDataRecord
(var DataRecord : DataRecordType)
S
Rest
‘end InitializeDataRecord
end rule

Step 7. Add an Object Data Record Parameter
to Each Procedure of the Module.

This rule adds an additional object data record type
parameter called DataRecord as the first parameter to
each procedure of the object module. Nullary procedures,
which for brevity are not handled here, would require a
slightly different rule to be applied in addition to this one.

rule addObjectParameterToProcedures
replace [declarationsAndStatements]

procedure PName [id]
(Argl [parameterDeclaration]
RestOfArgs [repCommaParameterDecl])
PBody [subprogramBody]
procedure InitializeDataRecord
InitPList [optParameterList]
IBody [subprogramBody]
RestOfScope [declarationsAndStatements]

by [declarationsAndStatements]

procedure InitializeDataRecord InitPList
IBody

procedure PName

(var DataRecord : DataRecordType,
Argl RestOfArgs)

PBody

RestOfScope

end rule

In order to avoid an infinite sequence of matches, the
addObjectParameterToProcedures rule keeps track of
which procedures it has already transformed by moving
each one below the InitializeDataRecord procedure after it
has been done, and matching only the procedure
immediately above it.

Step 8. Transform Declarations of Instances of
the Object Type into Declarations of Object Data
Records.

The rule transformObjectReferences handles the final
two steps of the transform. The first of these is the
change of declarations of instance variables of the object
type into declarations of variables of the
DataRecordType exported by the object module followed
by a call to the InitializeDataRecord procedure of the
module.

rule transformObjectReferences ObName [id]
replace [declarationsAndStatements]
var ObVar [id] : ObName
RestOfScope [declarationsAndStatements]
by [declarationsAndStatements]
var ObVar : ObName . DataRecordType
ObName . InitializeDataRecord (ObVar)
RestOfScope [changeObjectProcedureCalls
ObVar ObName]
end rule

Step 9. Change Calls to the Object Instance's
Procedures into Calls to the Object Module.

The second step is the changeObjectProcedureCalls
rule, applied by the transformObjectReferences rule to
the scope of each object instance variable. This rule
takes two TXL parameters, the name of the instance
variable and the name of the object type. The
repCommaExpn production is similar to the repCommald
production explained earlier, and includes the leading
comma in the rest of the argument list to the procedure (if

any).

rule changeObjectProcedureCalls ObVar [id] ObName [id]

replace [procedureCall]
ObVar . PName [id] (FirstArg [expn]
RestOfArgs [repCommaExpn])
by [procedureCall]
ObName . PName (ObVar, FirstArg
RestOfArgs)
end rule

Figure 4 shows the result of applying the entire transform
to the example stack object type of figure 3.

Parametric Polymorphism

Most proponents of the object-oriented paradigm
consider some kind of polymorphic capability to be
essential. While true dynamic polymorphism might be
desirable in some contexts, many systems bow to the
requirements of efficient compilability and settle for some
lesser form, such as static parametric polymorphism in
the sense of [6] instead. C++, for example, limits its

module stack
import (error)
export (DataRecordType, InitializeDataRecord,
push, pop)

const maxdepth := 100

type DataRecordType:
record
storage : array 1 .. maxdepth of int
depth : 0 .. maxdepth
end record

procedure InitializeDataRecord (var DataRecord :
DataRecordType)
DataRecord.depth := 0
end InitializeDataRecord

procedure push (var DataRecord : DataRecordType,
e:int)
if DataRecord.depth <= maxdepth then
DataRecord.depth := DataRecord.depth + 1
DataRecord.storage (DataRecord.depth) := e
else
error ("stack overflow")
end if
end push

procedure pop (var DataRecord : DataRecordType,
var e :int)
if DataRecord.depth > 0 then
e := DataRecord.storage (DataRecord.depth)
DataRecord.depth := DataRecord.depth - 1
else
error ("stack underflow")
end if
end pop
end stack

var stackl : stack.DataRecordType
stack.InitializeDataRecord (stackl)
var stack? : stack.DataRecordType
stack.InitializeDataRecord (stack?)

stack.push (stackl, 5)
stack.push (stackl, 7)

stack2 := stackl % assign entire stackl
object
% to stack2
var x :int
stack.pop (stack2, x)
assert x=7

Figure 4. The Result of Transforming the Stack Object
Type of Figure 3 to a Turing Module Using the Rules of

the Object Type Dialect.

7

type class stack (maxdepth, elementType) :
object
import (error)
export (push, pop)

var storage :
array 1 .. maxdepth of elementType
var depth : 0 .. maxdepth

procedure push (e : elementType)
. same body as before . ..
end push

procedure pop (var e : elementType)
. same body as before . ..
end pop

depth :=0
end stack

type smallStackOfString : instance stack (10, string)
type bigStackOfInt : instance stack (100, int)

var stringStack : smallStackOfString
var intStack : bigStackOfInt

stringStack.push ("Hi there")
stringStack.push ("Hello yourself")

Figure 5. A Polymorphic Stack Object Type in the
Obijective Turing Dialect and Example Instances.

class polymorphism to either static parametric
polymorphism (using C preprocessor macros), or opaque
polymorphism using pointers [1].

Objective Turing follows this same static parametric
model and uses type parameters to provide polymorphic
objects. Syntactically, we introduce a new declaration
for a type class, which is simply a type-parameterized
type declaration. The dialect allows type classes of any
type, in particular object type classes.

Figure 5 shows the stack object type extended to be an
object type class for stack object types with any depth
limit and any type of elements. Instances of the object
type class yield an object type, as shown in the
declaration of the smallStackOfString type and its
subsequent uses.

We can specify the syntax of type classes in TXL by
adding the typeClassDeclaration as an alternative
declaration form, instanceType as an alternative type
specification form, and using the new productions:

define typeClassDeclaration
order
type class [id] ([listid]) : [typeSpec]
end define

define instanceType
order
instance [id] ([list expnOrTypeSpec])
end define

define expnOrTypeSpec
choose
[expn]
[typeSpec]
end define

This grammar allows type classes to be parameterized by
either a type or an expression. We will assume that
expression parameters to type classes are to be passed
by name, although pass by value could easily be
implemented by the transform if required.

The basic strategy for transforming type classes is to
delete the type class declaration itself and transform
instances of the it into copies of the class' type
specification with the actual argument types and
expressions of the instance substituted for the formal
parameters of the class. The main rule starts things off,
applying the fixTypeClasses rule to every scope in the
program before applying the fixObjectTypes rule.

rule mainRule
replace [declarationsAndStatements]
P [declarationsAndStatements]
by [declarationsAndStatements]
P [fixTypeClasses]
[fixObjectTypes]
end rule

FixTypeClasses deletes the type class declaration and
applies the fixInstantiations rule to search its scope of
declaration for instances to transform.

rule fixTypeClasses
replace [declarationsAndStatements]
type class TCname [id] (Formals [listid]) :
TCbody [typeSpec]
RestOfScope [declarationsAndStatements]
by [declarationsAndStatements]
RestOfScope
[fixInstantiations TCname Formals TCbody]
end rule

FixInstantiations searches the scope for instances of the
type class and replaces the instance clause with a copy of
the type class' type specification body in which the actual
arguments of the instance have been substituted for the
formal parameters of the type class.

8

rule fixInstantiations TCname [id] Formals [list id]
TCbody [typeSpec]
replace [declaration]
type ITname [id] :
instance TCname
(‘Actuals [list expnOrTypeSpec])
by [declaration]
type ITname :
TCbody [substitute Formals Actuals]
end rule

rule substitute Old [id] New [expnOrTypeSpec]
replace [id]
old
by [expnOrTypeSpec]
New
end rule

The application of the substitute rule takes advantage of
another feature of TXL - its ability to automatically apply
rules to corresponding elements of two lists of items. In
this case, Formals and Actuals are lists of ids and
expnOrTypeSpecs respectively. TXL automatically
applies the rule successively to each corresponding (id,
expnOrTypeSpec) pair in the lists.

Figure 6 shows the result of using these transforms on
the example polymorphic stack object type of figure 5, to
yield monomorphic object types that can then be
transformed by the fixObjectTypes rule to yield a true
Turing language program.

Conclusion

We have shown that it is possible to clearly specify both
object types and parametric polymorphism using
independent syntactic transformation rules. These
transformations have been expressed in the TXL dialect
specification language and fed to the TXL processor to
yield a viable prototype implementation of Objective
Turing. With little significant change, these same
transformation rules can be used for any compiled
language of the Pascal family and so form a convenient
and compact specification of the general features.

Two other features commonly associated with object-
oriented programming are inheritance and dynamic
binding. These have also been specified as independent
TXL transformation rules and are features of the full
Obijective Turing dialect [10].

type smallStackOfString :
object
import (error)
export (push, pop)

var storage : array 1 .. maxdepth of string
var depth : 0 .. 10

procedure push (e : string)
. same body as before . ..

end push

procedure pop (var e : string)
. same body as before ...

end pop

depth:=0
end smallStackOfString
type bigStackOfint :
object
import (error)
export (push, pop)

var storage : array 1 .. maxdepth of int
var depth : 0 .. 100

procedure push (e : int)
. same body as before . ..

end push

procedure pop (var e : int)
. same body as before . ..

end pop

depth :=0
end smallStackOfString

var stringStack : smallStackOfString
var intStack : bigStackOfInt

stringStack.push ("Hi there")
stringStack.push ("Hello yourself")

Figure 6. Result of Applying the fixTypeClasses Rules to
the Example of Figure 5.

Scope and Limitations of TXL

The TXL transformations given in this paper, while quite
viable, are deceptively simple and transparent, in part
because of the necessity of simplifying the syntax of the
dialect for concise presentation in this paper. In practice,
rule sets can be much larger than the set given here, and
it is often very difficult to see how to achieve the desired
result using TXL transformation rules.

The scope of possible transformations implementable in
TXL is however much greater than the simple syntactic
transforms shown in this paper. TXL rule sets are
capable of implementing all of the traditional
programming language implementation tasks, including
parsing, name and scope analysis, type checking,
operator precedence analysis, interface matching, anti-
aliasing, and even (in theory) code generation. In fact, it
has been shown that the computational power of TXL
rule sets is equivalent to that of Turing machines [11], so
there is no theoretical limit to the translation that can be
done short of the bounds of computability.

From a practical standpoint, however, TXL is severely
limited by the complexity of the rule sets and by the
performance of the TXL processor, which necessarily
uses a variant of Prolog unification to apply rules. The
performance of the rule set given in this paper is quite
reasonable, taking about 8 seconds to translate a 200
line Objective Turing program into Turing on a Sun 3/50,
but it is very easy to write rule sets that can take much
longer. A detailed discussion of the scope and limitations
of TXL appears in [11].

Acknowledgements

TXL was designed by J.R. Cordy and C.D. Halpern at the
University of Toronto, and was implemented by the
authors at Queen's University. The Turing programming
language was designed by R.C. Holt and J.R. Cordy at
the University of Toronto. The ideas for the run-time
models used in the transformations described in this
paper come from various sources, including the
implementations of C++ [1], Euclid [7] [8] and Force One
[9]. This work was supported by the Natural Sciences
and Engineering Research Council of Canada.

References

1. B. Stroustrup, The C++ Reference Manual, Addison-
Wesley, 1986.

2. B.J. Cox, Object Oriented Programming An
Evolutionary Approach, Addison-Wesley, 1986.
3. R.C. Holt and J.R. Cordy, "The TURING

Programming Language", Comm. of the ACM 31,12
(December 1988), pp. 1410-1423.

4. J.R. Cordy, C.D. Halpern and E. Promislow, "TXL: A
Rapid Prototyping System for Programming Language
Dialects", Proc. IEEE 1988 International Conference On
Computer Languages, October 1988, pp. 280-285.

5. R.D.Tennent, Principles of Programming Languages,
Prentice-Hall, 1981.

6. L. Cardelliand P. Wegner, "On Understanding Types,
Data Abstraction, and Polymorphism”, ACM Computing
Surveys 17,4 (December 1985), pp. 471-522.

7. B.W. Lampson, J.J. Horning, R.L. London, J.G.
Mitchell and G.J. Popek, "Report on the Programming
Language EUCLID", ACM SIGPLAN Notices 12,2
(February 1977).

8. R.C. Holt and D.B. Wortman, "A Model for
Implementing Euclid Modules and Prototypes”, ACM
Trans. on Programming Languages and Systems 4,4
(October 1982), pp. 552-562.

9. G.V. Cormack and A.K. Wright, "Polymorphism in the
Compiled Language Force One", Proc. HICSS-22 1987
Hawaii International Conference on System Sciences,
Volume Il (Software), January 1987, pp. 284-292.

10. J.R. Cordy and E. Promislow, “Specification and
Automatic Prototype Implementation of Object-Oriented
Concepts Using the TXL Dialect Processor”, External
Technical Report 89-251, Department of Computing and
Information Science, Queen’s University at Kingston,
March 1989.

11. Eric Promislow, A Run-Time Model for Generating
Semantic Transformations from Syntactic Specifications,
M.Sc. thesis, Department of Computing and Information
Science, Queen’s University at Kingston, September
1989.

10

