
TXL Source Transformation in Practice

James R. Cordy
School of Computing, Queen’s University

Kingston, Ontario, Canada K7L 2N8
Email: cordy@cs.queensu.ca

Abstract—The TXL source transformation system is widely
used in industry and academia for both research and production
tasks involving source transformation and software analysis.
While it is designed to be accessible to software practitioners,
understanding how to use TXL effectively takes time and has a
steep learning curve. This tutorial is designed to get you over the
initial hump and rapidly move you from a TXL novice to the
skills necessary to use it effectively in real applications. Consisting
of a combination of one hour lecture presentations followed by
one hour practice sessions, this is a hands-on tutorial in which
participants quickly learn the basics of how to use TXL effectively
in their research or industrial practice.

Keywords—TXL, source transformation, platform migration,
static analysis, reverse- and re-engineering, rapid prototyping

I. INTRODUCTION

TXL [1] is a programming language designed explicitly for
authoring source transformation tasks of all kinds. Unlike most
other source transformation tools, TXL is completely self-
contained - all aspects of the source transformation, including
the scanner, parser, transformer and output pretty-printer are
all written in TXL. Because it has no dependencies on external
parsers, frameworks or libraries, TXL programs are completely
self-contained and easily portable and distributable across
platforms and operating systems.

TXL is a mature technology that is widely used in academia
and industry in tasks such as software analysis and reverse
engineering, software renovation and re-engineering, platform,
language and library migration, natural language requirements
extraction, clone detection, code instrumentation, and rapid
prototyping of DSLs and other new languages. More than 100
companies are currently using TXL worldwide, and more than
100 refereed academic papers on research using TXL have
been presented at SANER and its sister conferences over the
past decade.

It is the engine that powers the LS/2000 design recovery
system [2], the NICAD code clone detector [3], the SIMONE
model clone detector [4], commercial software modelling tools
such as Embarcadero Describe, software analysis services
such as those offered by IBM Global Services, and custom
software analysis and migration tools used in companies such
as Siemens, Ericsson, Lockheed Martin and General Motors.

Because of its simplicity and self-contained nature, TXL is
widely used to introduce source transformation and software
analysis tools and techniques in graduate and undergraduate
courses. Nevertheless, it has a steep learning curve and it takes
some practice to understand how to use it effectively in any
particular domain of application.

II. AIMS & AUDIENCE

The purpose of this one day tutorial is to address that
issue by rapidly bringing participants up to speed in TXL,
in order to accelerate their progress and get them “over the
hill” so that they can begin to use TXL effectively in their
work. The broader aim of the tutorial is to rapidly bring those
interested in understanding and using TXL in particular and
source transformation tools in general up to speed on how
to effectively use these tools in practice. The emphasis is on
the practical use of the tools rather than the theory. Example
problems from the SANER domain are used throughout.

The intended audience is SANER researchers and industrial
practitioners facing problems involving software code analysis,
transformation or translation who are exploring technical alter-
natives including TXL. The tutorial is aimed at TXL novices,
and no previous exposure to TXL is expected or required.
Some familiarity with compiler technology basics is an asset.

III. ORGANIZATION & SCHEDULE

The tutorial is designed as a mix of tutorial presentations
and hands-on practice sessions in which participants can prac-
tice the techniques presented on their own computers, under
the interactive guidance of the presenter. Each presentation
introduces a new level of sophistication and technology, which
is then practiced in the following practice session. Content is
roughly based on the TXL Cookbook [5], a collection of TXL
problem schemas and paradigms of use designed to cover a
range of software analysis and evolution applications.

There are three parts to the tutorial, each consisting of a
presentation session followed by a hands-on practice session.
In order to facilitate learning and understanding, participants
work together in groups of two on lab problems in the practice
sessions.

Part 1: TXL Basics

We begin with a basic introduction to TXL, for those
who are new to it. Topics include the TXL paradigm, the
TXL processor, anatomy of a TXL program, specification
of lexical and syntactic forms, input parsing, base grammars
and grammar overrides, transformation rules and functions,
patterns and replacements, deconstructors and constructors,
basic TXL program authoring strategy, and how to understand
TXL.

The hands-on lab session for Part 1 consists of installing
and running TXL, installing and working with a language
grammar, making a basic TXL program, parsing inputs, and



making and refining simple TXL transformations. Lab sessions
use the popular PHP scripting language as the target language.

Part 2: Parser-based Techniques

Part 2 concentrates on parsing techniques, the foundation of
all work in TXL. The presentation is example-based, working
through several typical parser-based problems using a concrete
example toy language. Topics include crafting a TXL grammar,
making a basic parser, pretty-printing using TXL, designing
and implementing language extensions, robust parsing, island
grammars and semi-parsing, agile parsing to simplify rules.

In the lab session for Part 2, participants explore techniques
for restructuring programs using TXL in the context of a
concrete restructuring problem to improve information hiding
in PHP classes. Transformation techniques practiced include
reordering of program elements, working with multiple copies,
filtering to separate elements of interest, interface extraction,
program reorganization.

Part 3: Rule-based Techniques

Part 3 introduces paradigms for program transformation
and analysis using TXL rules. A small set of representative
problems in software restructuring, optimization, and static and
dynamic analysis serve as concrete examples to demonstrate
TXL programming paradigms. Planned topics include scopes
of application, grammatical type extraction and filtering, nega-
tive patterns, transforming to a fixed point, dependency sorting,
deep pattern match, one pass rules, context-dependent rules, it-
eration, attributes, grammatical abstraction, generalization and
specialization, complex conditions, dynamic output, counting
and statistics, program markup, fact extraction.

Part 3’s lab session involves implementing two real PHP
analysis problems: implementing a scoped dialect of the lan-
guage to address plugin interference, and static call graph
extraction for PHP. These are challenging real problems which
help participants to gain experience and confidence in their use
of TXL. Small prizes are offered for the best solutions crafted
by teams in the tutorial.

IV. OUTCOMES

At the end of the tutorial participants will be well-versed
in the basics of TXL and the paradigms of its application
to problems in programming language parsing and source
transformation, software translation and migration, language

extensions and DSL rapid prototyping, static and dynamic
analysis, reverse- and re-engineering, program metrics and
statistics, and other kinds of software engineering tasks based
on manipulation of source code.

V. MATERIALS

Participants download a free copy of the FreeTXL software,
examples and documentation from the TXL website [6], and
work on their own laptop computers in a team environment
in the practice lab sessions. Copies of all presentations and
lab materials are available to tutorial participants. Modest
prizes are awarded for the best problem solutions crafted by
participants in the lab practice sessions.

ABOUT THE PRESENTER

James Cordy is Professor and past Director of the School
of Computing at Queens University at Kingston, Canada. As
leader of the TXL source transformation project with hundreds
of academic and industrial users worldwide, he is the author
of more than 160 refereed contributions in programming lan-
guages, software engineering and artificial intelligence. From
1995-2001 he was Vice President and Chief Research Scientist
at Legasys Corporation, whose TXL-based LS/2000 source
code analysis system was responsible for the analysis and
reprogramming of over 4.5 billion lines of financial code of
the largest Canadian banks for the Year 2000 problem. Dr.
Cordy is an ACM Distinguished Scientist, a senior member of
the IEEE, and an IBM CAS faculty fellow.

REFERENCES

[1] James R. Cordy, “The TXL Source Transformation Language”, Science
of Computer Programming 61,3 (August 2006), pages 190–210.

[2] Thomas R. Dean, James R. Cordy, Kevin A. Schneider and Andrew
J. Malton, “Using Design Recovery Techniques to Transform Legacy
Systems”, Proc. ICSM 2001, 17th Intl. Conf. on Software Maintenance,
pages 622–631.

[3] Chanchal K. Roy and James R. Cordy, “NICAD: Accurate Detection of
Near-Miss Intentional Clones Using Flexible Pretty-Printing and Code
Normalization”, Proc, ICPC 2008, 16th IEEE Intl. Conf. on Program
Comprehension, pages 172–181.

[4] James R. Cordy, “Submodel Pattern Extraction for Simulink Models”,
Proc. SPLC 2013, 17th Intl. Software Product Line Conf., pages 7–10.

[5] James R. Cordy, “Excerpts from the TXL Cookbook”, Generative and
Transformational Techniques in Software Engineering III, Lecture Notes
in Computer Science 6491 (January 2011), pages 27-91.

[6] TXL Programming Language Website, http://www.txl.ca


