
ANDREWS83
Andrews, G.R., Schneider, F.B.; Concepts and Notations for Concurrent Programming; ACM Computing
Surveys 15, 1 (March 1983) pp. 3-43.

Technical advances have made it possible to build distributed systems that were in the past impracti-
cal, and this in turn has brought concurrent programming to all application areas.Theoretical advances in
programming language design have simultaneously indicated the desirability of notations that can express
concurrency simply and make requirements for synchronization explicit, while facilitating formal proofs of
correctness.

This paper summarizes the main concepts in concurrent programming and classifies some of the lan-
guage notations used for expressing concurrency. Examples of languages which use these notations are
given throughout.

First a brief summary of concurrent programming concepts is given. Theconcepts of process and
concurrent program are defined and various methods of executing concurrent processes are given, including
multiprogramming, multiprocessing, and distributed processing. Communication and synchronization
among concurrent processes are identified as being necessary for cooperation among the processes.Thus
the three main decisions in designing a notation are how to indicate 1. concurrent execution, 2. interprocess
communication, and 3. interprocess synchronization.Various methods for each of these are then discussed
in detail.

One method of specifying concurrent execution is the use of coroutines, where each coroutine is seen
as implementing a process. The semantics of coroutines allow execution of only one coroutine at a time.
While this is sufficient where a processor is shared, it cannot express true parallel processing.Fork and join
statements can express this, since the invoked and the invoker proceed in parallel. This mechanism is
described as often difficult to understand, but very powerful. Thecobegin statement is less confusing, and
although not as powerful as fork and join, it is sufficient for most situations. The final strategy given for
expressing concurrent execution is called process declaration. Its advantage is that it states explicitly which
routines will be executed concurrently. Some implementations of this scheme have only one instance of
each process, while others allow the programmer to create several.

Methods for communication and synchronization are divided into two groups - those based on shared
variables, and those based on message passing.

When shared variables are used for communication, two kinds of synchronization are deemed useful
- mutual exclusion which treats a group of statements as an indivisible operation, and condition synchro-
nization which can delay a process until some condition becomes true.Several methods are described for
implementing these two kinds of synchronization.Busy-waiting can be used successfully for both, but is
seen as difficult to use, and wasteful of processor cycles. Semaphoreswere developed as a better alterna-
tive, but are unstructured and thus difficult to use without error. They also use the same notation for both
mutual exclusion and condition synchronization. Semaphores were extended by introducing constructs
which require that their use be structured. The resulting notations were conditional critical regions, moni-
tors and path expressions.

Message passing is the second primitive for communication and synchronization between processes.
It can be thought of as another extension of semaphores which allows them to not only synchronize, but to
contain data. One important issue is how the channels of communication are to be specified.Communica-
tion can be made one to one, many to one, or many to many by using direct, port and global naming respec-
tively. Also, the source and destination of a message can be either fixed at compile time (static channel
naming) or computed at run time (dynamic channel naming).The other main issue of concern with mes-
sage passing is how synchronization will be achieved. Thisis affected by the choice of either blocking or
non-blocking sends and receives. Four languages which base concurrency on message passing are
described - Concurrent Sequential Processes (CSP), Programming Language In The Sky (PLITS), Ada, and
Synchronizing Resources (SR).

Finally, the large variety of programming languages that use the mechanisms described above for
concurrency are grouped into three classes: procedure oriented languages, message oriented languages, and
operation oriented languages. All three categories are considered by the authors to be equivalent in expres-
sive power, but each suited to a different architecture, and emphasizing a different style of programming.



-2-

The authors conclude that while progress has been made in finding solutions to concurrency prob-
lems and developing notations for these solutions, there is still much work to be done. In the area of pro-
gramming languages, efforts must be made to use and evaluate the utility of languages which adopt the var-
ious notations discussed, and formal techniques for constructing correct programs must be developed.


