ANDREWSS83
Andrews, G.R., SchneideF.B.; Concepts and Notations for Concurrent Programming; ACM Computing
Suneys 15, 1 (March 1983) pp. 3-43.

Technical advances kia made it possible touild distributed systems that were in the past impracti-
cal, and this in turn has brought concurrent programming to all application dieesretical advances in
programming language designvhasmultaneously indicated the desirability of notations that cqumess
concurreng simply and mak requirements for synchronization explicit, while facilitating formal proofs of
correctness.

This paper summarizes the main concepts in concurrent programming and classifies some of the lan-
guage notations used foxpressing concurregc Examples of languages which use these notations are
given throughout.

First a brief summary of concurrent programming conceptsvengiTheconcepts of process and
concurrent program are defined and various methodseofittng concurrent processes areegi including
multiprogramming, multiprocessing, and distributed processing. Communication and synchronization
among concurrent processes are identified as being necessary for cooperation among the prbussses.
the three main decisions in designing a notation anetbdndicate 1. concurrenkecution, 2. interprocess
communication, and 3. interprocess synchronizatiarious methods for each of these are then discussed
in detail.

One method of specifying concurreneeution is the use of coroutines, where each coroutine is seen
as implementing a process. The semantics of coroutineg etklscution of only one coroutine at a time.
While this is sufficient where a processor is shared, it canpotss true parallel processingork and join
statements can express this, since tiwvekied and the iwvoker proceed in parallel. This mechanism is
described as often difficult to understand, but vemygrtul. Thecobegin statement is less confusing, and
although not as powerful as fork and join, it isfisignt for most situations. The final strategyemi for
expressing concurrenikecution is called process declaration. Its advantage is that it states explicitly which
routines will be gecuted concurrently Some implementations of this schemevdaanly one instance of
each process, while others allthe programmer to createveeal.

Methods for communication and synchronization are divided imagteups - those based on shared
variables, and those based on message passing.

When shared variables are used for communicatiomkimds of synchronization are deemed useful
- mutual exclusion which treats a group of statements as an indivisible operation, and condition synchro-
nization which can delay a process until some condition becomesSeseral methods are described for
implementing these twkinds of synchronizationBusy-waiting can be used successfully for both, but is
seen as difficult to use, and wasteful of procesgdes. Semaphoresere deeloped as a better alterna-
tive, but are unstructured and thus difficult to use without erfdrey also use the same notation for both
mutual exclusion and condition synchronization. Semaphores were extended by introducing constructs
which require that their use be structured. The resulting notations were conditional critical regions, moni-
tors and path expressions.

Message passing is the second priraifor communication and synchronization between processes.
It can be thought of as another extension of semaphores which allows them to not only synchronize, but to
contain data. One important issue isvitbe channels of communication are to be speciftésimmunica-
tion can be made one to one, mémone, or may to mary by using direct, port and global naming respec-
tively. Also, the source and destination of a message can be either fixed at compile time (static channel
naming) or computed at run time (dynamic channel namilgg other main issue of concern with mes-
sage passing is thosynchronization will be achied. Thisis affected by the choice of either blocking or
non-blocking sends and reees. Four languages which base concurseran message passing are
described - Concurrent Sequential Processes (CSP), Programming Language w (PFi¢TS®, Ada, and
Synchronizing Resources (SR).

Finally, the large variety of programming languages that use the mechanisms descrimedrbo
concurreng are grouped into three classes: procedure oriented languages, message oriented languages, and
operation oriented languages. All three categories are considered by the authors tealnemuepres-
sive power, but each suited to a different architecture, and emphasizing a different style of programming.



-2-

The authors conclude that while progress has been made in finding solutions to copqualenc
lems and deeloping notations for these solutions, there is still much work to be done. In the area of pro-
gramming languages,fefts must be made to use andieate the utility of languages which adopt tlee-v
ious notations discussed, and formal techniques for constructing correct programs mudbpedie



