
BRINCHHANSEN75
Brinch Hansen, P.; The Programming Language Concurrent Pascal; IEEE Transactions on Software Engi-
neering (June 1975) pp. 199-207.

This paper presents an informal description of the systems programming language Concurrent Pascal.
The paper gives no implementation details of the language nor discusses the syntax of the language in any
great detail. Instead, the paper restricts itself to the semantics of the concurrency features and how the can
be used to aid in the implementation of operating systems.

The paper is divided into two sections. In the first section, processes and monitors are introduced as
new abstract data types. A process is defined as a private data structure and a sequential program that can
operate on that data. A monitor consists of a shared data structure and a set of synchronizing operations
(procedures) that processes can execute to access the data in a controlled way. The virtual machine upon
which the concurrent program is running handles the short term scheduling of simultaneous monitor calls
while semaphores are used to perform medium delay scheduling and synchronization of processes. These
semaphores are given the names delay - which blocks the running process placing it in a queue, and con-
tinue - which causes a queued process to resume execution. The queue is a simple data type and it may con-
tain at most one process. In addition to the general monitor data type, Concurrent Pascal contains a second
monitor type known as a class. The difference between a class and a regular monitor is that the exclusive
access to class procedures to class variables can be guaranteed at compile time. Thus, the virtual machine
does not have to perform short term scheduling of simultaneous calls to class procedures at run time so
class calls are considerably faster than monitor calls.

For the remainder of the section Brinch Hansen goes on to explain how these entities are used to con-
struct a hierarchically structured operating system and he talks a little about the scope rules for the new data
abstractions and how the structures lend themselves to implementing hierarchically structured systems.

In the second section, Brinch Hansen informally introduces the language notation of Concurrent Pas-
cal by means of a detailed example. In a second example, the author shows how the seemingly restrictive
single process queues can be used to construct a multi-process queue. Thus, the semaphores of Concurrent
Pascal are shown to have the same power as the multi-process constructs suggested in other language
designs (i.e. ’event’ and ’condition’ queues).

This paper serves as a good introduction to process/monitor styled concurrent languages. The lan-
guage itself is of particular importance being one of the first concurrent language designs and one of the
first written with systems implementation in mind.

’’


