BRINCHHANSEN75
Brinch Hansen, P.; The Programming Language Concurrent Pascal; laE§adtions on Software Engi-
neering (June 1975) pp. 199-207.

This paper presents an informal description of the systems programming language Conascegnt P
The paper gies no mplementation details of the language nor discusses the syntax of the language in an
great detail. Instead, the paper restricts itself to the semantics of the conctestnes and hothe can
be used to aid in the implementation of operating systems.

The paper is divided into twsections. In the first section, processes and monitors are introduced as
new abstract data types. A process is defined asvatprdata structure and a sequential program that can
operate on that data. A monitor consists of a shared data structure and a set of synchronizing operations
(procedures) that processes cagacate to access the data in a controllead.Whe virtual machine upon
which the concurrent program is running handles the short term scheduling of simultaneous monitor calls
while semaphores are used to perform medium delay scheduling and synchronization of processes. These
semaphores arewvgn the names delay - which blocks the running process placing it in a queue, and con-
tinue - which causes a queued process to resyesat®n. The queue is a simple data type and it may con-
tain at most one process. In addition to the general monitor data type, Concurrent Pascal contains a second
monitor type knwn as a class. The difference between a class and a regular monitor is tixatuiece
access to class procedures to clagtables can be guaranteed at compile time. Thus, the virtual machine
does not hee perform short term scheduling of simultaneous calls to class procedures at run time so
class calls are considerably faster than monitor calls.

For the remainder of the section Brinch Hansen goes on to explaithkse entities are used to con-
struct a hierarchically structured operating system and he talks a little about the scope rulesviodale ne
abstractions and kothe structures lend themselves to implementing hierarchically structured systems.

In the second section, Brinch Hansen informally introduces the language notation of Conasrent P
cal by means of a detailed example. In a seceadple, the author showswdhe seemingly restricte
single process queues can be used to construct a multi-process queue. Thus, the semaphores of Concurrent
Pascal are shown to kia the same pmer as the multi-process constructs suggested in other language
designs (i.e. ‘¢ent’ and 'condition’ queues).

This paper sees as a good introduction to process/monitor styled concurrent languages. The lan-
guage itself is of particular importance being one of the first concurrent language designs and one of the
first written with systems implementation in mind.

