BRINCHHANSEN78
Brinch Hansen, .PDistributed Processes: A Concurrent Programming Concept; CACM 21, Y{énfNer
1978).

In this paper Brinch Hansen provides the base specifications for a language which generalizes most
concurrent programming constructs.

The language is intended for real-time multiple microprocessor applications. Each microprocessor
has only its own local memargnd so distributed processes do not use shared variables. Vin@erent
criterion is extended by requiring each disitéd process to reside on its own procesBeal-time
response is guaranteed by the progransrédocation of one distributed process to each critical function.

A distributed process contains a specification of procedures that canokedity ather processes,
and of an initial block. It begins byecuting its initial block. This continues until the initial block igeo
or a process mustait for a condition to become true. At this point it may accept requests from other pro-
cesses tox@cute one of itsxernally visible procedures. It may then resume its own instruction thread or
execute another external request.

As well, the language contains mechanisms to implement non-determinism through guarded com-
mands and guardedgiens. Aguarded command non-deterministically selects one of a set of statements
to execute if one or more of the guard conditions is found to be true. A guargied ontinually checks
to see if a region of code can be@uted under control of guard conditions.

The paper then proceeds to provide a series of examples showirdishibuted processes can eas-
ily implement semaphoresuffers, monitors, resource schedulers, process arrays and corolEnes.
example is followed by a short explanation and a suggestion for a progranxeinge Thesexamples
shaw that distributed processes are a powerful angbeteconcurreng construct. Theguarded regions and
commands implement process synchronization and the process structure ensurexohugical.eDistrib-
uted processes are in the same class as lddepeimunicating sequential processes’ ay e primarily
tools for theoretical westigation into concurrerc

Brinch Hansen considers some of the implementation problatrashbhe readily admits, the details
are excluded. Forxample, he suggests that parameter passing between distributed processes can be han-
dled by a single input and output operation, but kesgio ctails as to he mutual excclusion among se
eral calling processes might be implemented.

While the reader is thus left with maananswered details, one of the fundamental goals of language
research - that of finding simple powerful language constructs - is definitelyaithide paper is easily
read and formulates the basis for more study into a promising congucaTstruct.



