
BRINCHHANSEN78
Brinch Hansen, P.; Distributed Processes: A Concurrent Programming Concept; CACM 21, 11 (November
1978).

In this paper Brinch Hansen provides the base specifications for a language which generalizes most
concurrent programming constructs.

The language is intended for real-time multiple microprocessor applications. Each microprocessor
has only its own local memory, and so distributed processes do not use shared variables. This environment
criterion is extended by requiring each distributed process to reside on its own processor. Real-time
response is guaranteed by the programmer’s allocation of one distributed process to each critical function.

A distributed process contains a specification of procedures that can be invoked by other processes,
and of an initial block. It begins by executing its initial block. This continues until the initial block is over
or a process must wait for a condition to become true. At this point it may accept requests from other pro-
cesses to execute one of its externally visible procedures. It may then resume its own instruction thread or
execute another external request.

As well, the language contains mechanisms to implement non-determinism through guarded com-
mands and guarded regions. Aguarded command non-deterministically selects one of a set of statements
to execute if one or more of the guard conditions is found to be true. A guarded region continually checks
to see if a region of code can be executed under control of guard conditions.

The paper then proceeds to provide a series of examples showing how distributed processes can eas-
ily implement semaphores, buffers, monitors, resource schedulers, process arrays and coroutines.Each
example is followed by a short explanation and a suggestion for a programming exercise. Theseexamples
show that distributed processes are a powerful and elegant concurrency construct. Theguarded regions and
commands implement process synchronization and the process structure ensures mutual exclusion. Distrib-
uted processes are in the same class as Hoare’s ’communicating sequential processes’ as they are primarily
tools for theoretical investigation into concurrency.

Brinch Hansen considers some of the implementation problems but as he readily admits, the details
are excluded. For example, he suggests that parameter passing between distributed processes can be han-
dled by a single input and output operation, but he gives no details as to how mutual exclusion among sev-
eral calling processes might be implemented.

While the reader is thus left with many unanswered details, one of the fundamental goals of language
research - that of finding simple powerful language constructs - is definitely achieved. The paper is easily
read and formulates the basis for more study into a promising concurrency construct.


