DONNERS83
Donner M.D.; The Design of OWL a Language for Walking; ACM SIGPLAN Notices 18, 16 (June 1983)

SYNOPSIS

This paper describes a special purpose language designed to facilitate the computerized control of a
six legged walking machine.

The author wished to westigate the walking behaviour of insects which seems to be controlled by
low levd (local) mechanisms with only a limited amount of higheléglobal) input. i.e. each deand its
motions are lagely independent. This approach requires loosely coupled concurrent processes and the
author felt that x@sting concurreng control features which were designed for operating systems were not
well suited to his problem since "ghéocus on synchronization of mutually aldius tasks at the point of
resource requests, whereas what | need is a way to permit concurrent mutually constrained processes to
cooperate." Furthermotle author wanted good real time performance amidiability and these imply a
bound on the time t&k by ay process. Helso wanted a capability Ekhardware interrupts, where one
process can disable and terminate other processes without their cooperatoapproach taken was to
modify Hoares CSP which uses guarded commands and add features that modelled interruptsaire.softw
OWL has the following syntax :

<process> := <sequence> | <concurrence> |
process call | primie all |
done(Boolean) | alert(Boolean) | both(Boolean)
<sequence> := { ProcesslList }
<concurrence> := [ProcessList]
<ProcessList> := process | process, processList

with informal semantics as follows

A sequence { ... } only terminates when one of its subprocessesites done(true), otherwise
each subprocess (starting with the first)xecated in turn, the successor of the last subprocess is the first
subprocess.

A concurrence [...] is a list of processes which arexatwed concurrentlyThe concurrence
terminates when all its subprocesses terminateiei if one of its subprocessegeeutes alert(true) then
all of its siblings subprocesses are terminated and only the subprocess that raised the alert continues.

A primitive all is a construct from the base language e.g. a procedure or a furCtimently
the author has an implementtion using 'C’ as a base language.

both(...) asserts both alert(true) and done(true) simultaneously.

The following is an example program from the walking code

Exist :

{

[
{{ b oth(detectCaollision) }, handleCollision, done(true) },

{{ b oth(detectTipping) }, handleTipping, done(true) },
Walk

]
}

Activation of the Exist process aedies a sequence which igeeuted foreer (since there are no
'done’s’ within the sequence). Inside, the concurrence has three subprocesses which aratedl siotiul-
taneously , the first tavwait for error conditions while the other (Walk) is the normal walking process. If an
error occurs the WAk process is terminated by the ’alert’, the error handler is called and then the subpro-
cess terminates (with done(true)) which terminates the concurrence. The whole concurrence is then

reactvated by the outermost sequence.

The language was also designed with verification in mind. The actual walking machine weighs 1600
Ibs and mues quite fast, so the author is interested in verification for pragmatic reasons. The basic asser
tion the author wished to slwavas "at no time in thexecution of this program will there be twndepen-
dent threads of control concurrently aetihat attempt to issue conflicting commands to the same actuator
(leg)" although he doegrsay hav he acomplished this.

COMMENTS

The paper tags a different approach to concurrgrtbe ’alert’ feature which models interrupts can-
not implemented with the usual concurngtieatures (monitors, semaphores, rends). Thepaper also
illustrates that a viable approach to the solution of some problems is to design a language in which it is easy
to describe and thus selthe problem.

