LAMPSONS80
Lampson, B.Wand Redell D.D.; Experience with Processes and Monitors in Mesa; CACM 23, 2 (February
1980) pp. 105-117.

The Mesa programming languagasvdesigned in the mid-1970s at the Xerox Palo Alto Research
Center for the "construction of large, serious programs" in a wide range of applicationTardasilitate
concurrent programming, processes and monitors were added later to the lafidweagethors present an
introduction to the concurrepdacilities in Mesa and reflect on their design decisions in light of outstand-
ing research issues concerning processes and interprocess communication.

The major issues addressed include: (1) program structure (processes must fit into the module-based
scheme); (2) process creation (dynamic vs. static); (3) monitor creation (dynamic vs. statickl14) W
statement semantics in a nested monitor call; (5) alteenaBthods for resuming aiting processes (time-
outs, aborts, broadcasts); (6) the precise semantics of waiting on a condition variable; (7) the interaction
between monitors and priority scheduling of processes; and (8) fitting input/output devices into the frame-
work of monitors and condition variables.

Mesa considers the creation of avngrocess as a special procedurevatitn which &ecutes con-
currently with its caller Any procedure (except an internal procedure of a monitor) may be called in this
way. The caller issues axglicit FORK command to create the process and a JOIN commandvatiadio
caller and callee to mge, with the callee returning results. The DEH command frees the created
process from its creatoso hat the DERACHed process dies on itsvn, without synchronizing with the
caller A process in Mesa is treated as a value in the language, which can be assigned, passed as a parame-
ter, and in general treated kkany ather value. Thisraises the problem of dangling references to pointers;
no protection is pndded. Nospecial declaration of a procedure to belwed as a process is needed (in
contrast to Concurrent Euclid [Holt 1983], foxample). Theauthors claim that process creation and
destruction is "moderate" in cost, and the cost in storage is reported to be twice the minimum cost of a pro-
cedure instance.

Monitors in Mesa are, as the usual notion suggests, tools for implementing synchronization con-
straints on processes for access to shared data. Mesa monitors are usually cast as nvinlyldseba
kinds of proceduresentry (the externally visible entry points into the monitanternal (private to the
monitor); andexternal (publicly visible but not required tocecute in a manner mutuallkeusive from the
entry procedures).

The notion of acquiring and releasing the monitor lock is discussed in the light of exceptions and
nested WAIT statementsA type constructor called monitored recordis introduced; it is exactly l&kan
ordinary record, except that it has a monitor lock and is intended for use as the protected data of.a monitor
This is to allev for control ewer multiple independent data objects within a single monitor (instead of
requiring the programmer to create multiple instances of the monitor module).

The Mesa design does not include signalling of condition variables as in $idzfiaition of moni-
tors [Hoare 1974], in which a procesaiting on a condition must run immediately when another process
signals that ariable, and the signalling process in turn runs as soon as the waitsr tteamonitor In
Mesa, when one process establishes a condition for which some other process may be wattfregtite
corresponding conditionaviable. ANOTIFY is regarded as a hint to a waiting process; some procagis w
ing on the condition will resume at some warient future time. When the waiting process resumes, it will
reacquire the monitor lock but doast have the guarantee that some other process has not entered the
monitor after the waiting process was notified; the waiting process must therei@eaatecthe waiting
condition each time it resumes. This laissez-faire approach provides the waiter withr weatantees
(only the monitor imariant) but saes process switches. This approach leads to three other proakespv
methods: (1}imeout aprocess which has been waiting for some timeout interval on a conditii@tiple
will resume rgardless of whether the condition has been notifi@).abort aprocess may be aborted at
ary time by eecuting Abort[process], which raises the Aborteagtaption when the process nexaits.
The aborted process is,iever, free to ignore the abort entirely; the abort is a gentle suggestion mecha-
nism. (3)broadcast a BROADCAST on a condition causes all the processes waiting on the condition to
resume.

-2-

Communication with input/output devices is handled by monitors and condéitables. Whera
device needs attention, it NOTIFYs a condition variable tdkewp te waiting handler process; since the
device does not actually acquire the monitor lock, theTNKY is called anaked NO'IFY. Wakeup-waiting
switches are provided in certain condition variables (making them binary semaphores) to erisare de
NOTIFYs are not lost due to timing races.

The authors discuss the implementation, describing the processor and its data structures, the run time
support package, the compijlend the performance of the Mesa concurnyefacilities. Aswell, three
applications and the Mesa problems disted through the applications are described: (1) Pilot, a general
purpose operating system to run a large, personal computer; (2) Violet, distributed calendar system; and (3)
Gatavay, an internetwork forwarder for packet networks.

By discussing some general issues in the design and use of monitors and processes, the authors pro-
vide insight into the reasons for decisions taken in the Mesa language design. Thevessaenfdes, ht
the paper does not suffer much from this. It does become somewhat obscure when discussing the Mesa
divergence from Hoars' monitors, process priorities, and non-module monitdise design of the Mesa
concurreng facilities incorporates some unique features which are worth examining.

[Hoare 1974] Hoare, C. A. R:Monitors: An Operating System Structuring Concep€omm. £M 17,
10 (October 1974), pp. 549-557.

[Holt 1983] Holt, R. C.Concurrent Euclid, Unix, and TunisToronto: Addison-\ésley, 1983.

