LISKOV79
Liskov, B.H., and Swder, A.; Exception Handling in CLU; IEEE TSE SE-5, 6 (Mmber 1979), pp.
546-558.

In the quest for reliable (robust, fault tolerant) programs, ones thateb&kasonably" under a wide
range of circumstances, linguistic structures cadl@dption handling mechanisms have keen designedTo
enhance reliabilityprocedures should be defined to beha generally as possible, responding with well-
defined responses to all possible combinationsgat leputs (inputs satisfying the type constraintsgne
when lower lgel modules on which those procedures are dependihgExceptionhandling mechanisms
facilitate communication of information, implicit oxglicit, that can be used to re@ from faults such as
erroneous data and failures ofvier level modules. Liskv and Snyder discuss various models xéeption
handling and describe the exception handling facilities in the CLU programming language.

The CLU programming language was designed ". . . to provide programmers with a toaultht w
enhance their &ctiveness in constructing programs of high quality — programs that are reliable and rea-
sonably easy to understand, modiéigd maintain. CLU aids programmers by yidhng constructs that
support the use of abstractions in program design and implementfitiskov & al. 1977]. Three kinds
of abstractions were recognized: data abstractions, procedural abstractions, and control abstractions.

The authors tak as a hsic assumption that for each procedure there is a set of circumstances in
which it will terminate "normally"; in general, this is when the input arguments satisfy certain constraints
and the lower kel modules (implemented in both hardware and software) on which the procedure depends
work properly In other circumstances, the procedure is unable to perfoymaaion that would lead to
normal termination, but instead must notify some other procedurex@onpte, the imoking procedure)
that an exceptional condition has occurred. The term "exception" is cheaetenor" because j&ep-
tion" implies not that something is wrong, but rather that an unusual situation has arisen. An exeample gi
is that of reading character input from a file. The usual method of checking for end-of-file in a language
without exception handling mechanisms is to check the character returneddsjchiaeacter routine for
an "eof" characterln CLU, end-of-file can be an exceptional condition raisedydtgharacter; only legiti-
mate characters are then returned by the normal return mechanism.

The CLU model of eception handling wolves the communication of information from the proce-
dure actation that detects arxeeptional condition (theignaler) to some other procedure agdtion that is
prepared to handle an occurrence of that conditioncgtober). The CLU mechanism is based orsia-
gle-level termination model. Only the immediate caller of a procedure may handle exceptions signalled by
that procedure, because, in the authorsiyidl exceptions that may be raised by a procedure, whether
explicitly or implicitly, must be considered part of that procedural abstraciomultilevel mechanism, in
which actvations other than the immediate caller of the signaler may handle the exception, does not hold to
that principle. In CLU, signals may be propagated up awaticin hierarcly. In the termination model,
the signalling actiation ceases toxést. Theresumption model allows the signaler to continuextstafter
signalling; if the catcher can fix up th&ceptional condition, the processing of the signaler mawén f
resume. Thdéandler may be vieed as an implicit procedure parameter of the signeddied by the sig-
naler when the exception handled is raised. The resumption model hasxpressie power but is more
complex The authors consider the relatiexpressie powers of the termination and resumption models,
and thg conclude that resumption, while the moremgoful technique, is truly useful only in very limited
situations and therefore does not justify the added complexity andrémé@mce such a technique imposes.

In CLU, a procedure can terminate in the normay sy returning, or it can terminate in one of-se
eral exceptional conditions by signalling. In each case, result objeftsingjfin number and type, may be
returned. Aprocedure heading must state the names of signals raised in the procedure and the number and
types of result objects returned by each kind of sighhis facilitates static checking both that the proce-
dure indeed signals the named exceptions and that calling procedure exception handlers are compatible
with the exceptions in the procedures it calls.

Exceptions arise only from wmncations of user defined procedures or built-in operaté/ghin a
procedure, dandler is code which is xecuted when its associatedception is raised by a called proce-
dure. Handlersire statically associated withvotations, and handlers may be attached only to statements,
not to expressions, operators, or type or precisionecsions. Thdatter decision ws taken to simplify the
mechanism. Eachandler names one or more exceptions to be handled, followed by a list of statements



-2-

describing the appropriate actionsyesal handlers may be attached to a statement. The handler body may
contain ay legd CLU statement.If the handler body returns or signals, the containing procedure will be
terminated. Thénandler may also be terminated byexit (see below) or because it cannot handle some
exception raised by an\vncation within the handler itself. Otherwise, when the handler body is finished,
the next statement folldng the handler in the normal Wlois executed. TheCLU exit statement may be

used within handlers to raise directly a condition so that condition can be handled in the same procedure
activation containing the handleiThe exit is in contrast and complementary to #hgnal statement, which

signals the condition to the calling procedurevatitin. Handlersmay be placed flexibly within proce-

dures; a handler must, \wever, be gdaced on the statement whoseaution is to be terminated if the han-

dler body terminates without returning or signalling.

If a procedure pnades no handler for an exception raised by some contaimechiion, a language-
defined exception namddilure is signalled.failure is implicitly an exception ofvery procedure and has
one result object, a string that may contain a description of the cause aifuhe failure may be &plic-
itly or implicitly signalled.

Exceptions may not be disabled. The CLU designers viewed disabling as inconsistent with encour
aging good programming practice, because errors thatdwotherwise raise exceptional conditions may
still occur without being recognized.

The authors discuss possible implementation techniques for exception handling mechanisms, includ-
ing methods for associatingvircations and handlers. The CLU exception handling mechaniam w
designed explicitly to provide information that programs, not programmers, can useves femn excep-
tional conditions. The mechanism canweeer, mesh smoothly with both debugging environments and
production diagnostic environments.

Liskov and Snyder present a lucid, compreheadiiscussion of issues in the design ateption
handling mechanisms, and by justifying their design decisions in light of that discussion, the auéhors gi
the reader a clear insight into the design philogopihthe CLU exception handling mechanisrihe
authors contend that previous mechanisms weedyopowerful and ill-structured. The CLU mechanism
itself appears simple yet werful; theunderlying design is rational and appears to be consistent with the
overall CLU design. The discussion of the scopexafeption handlers within procedures is, unfortunately
weak; specificallythe rules for placement of exception handlers are not, eedian example demonstrat-
ing the use of exception handling is ambiguous. The authors provide good references for further reading on
CLU, exception handling, and reliable software design. The CLU exception handitirtgsen important
part of the eolution of exception handling mechanisms.

[Liskov & al. 1977] Liskov, Barbara H., et al.; Abstraction Mechanisms in CLU;GBA 20, 8 (August
1977) pp. 564-576.



