STOTTS82
Stotts Jr., P.D.; A Comparedi Survey d Concurrent Programming LanguageCM SIGPLAN Notices
17, 9 (September 1982).

SYNOPSIS

In this paper the author says the design and language features found in concurrent languages. He
notes that concurrent languages are usually heavily influenced by the architectural sapgble & the
machine that will implement the language. He then identifiestajor types of machine.

1) SIMD (single instruction stream, multiple data stream), for example array machads Ik C IV.
Explicit synchronization primities ae not present and the hardware maintains data consgistenc
2) MIMD (multiple instruction stream, multiple data stream). Here the language designer migkt tive
synchronization primities between processes.

This paper deals with languages designed with the second type of machine in mind. The author
then sureys that various language features that concurrent languages exhibit.

1) synchronization and communication mechanisms: These include path expressions, semaphores, moni-
tors, coroutines, message passing and ports.

2) program modularity: fon@mple applying the procedure/subroutine concept to processes. Other features
mentioned include classes, modules and separate compilation facilities.

3) process creation: Is the number of processes fixed at compile time (static) or can procepaaesbd’’
or 'forked’ at run time (dynamically)?

4) process netork topology specification: Again there are static topologies where the communication paths
between processes areefikat compile time and the programmer must specify the topology (e.g. a tree or a
ring network) or dynamic topologies which are created and modified duxaogiteon. Note that static
process creation does not necessarily imply a static topology.

5) process scheduling: Moare processes scheduled?wHere the problems of deadlock and indefinite
postponement dealt with? Does the programmee leaplicit control of the scheduler? Can processes-o
ride the normal scheduling strategy?

6) processor binding: When are logical processes bound to physical processors? When the program is writ-
ten, automatically by the compiler or at run time?

7) process termination: In languages where processes aan shidd processes, do the child processes ter
minate when the parent does?

8) real time support: This is closely related to some of the topie.dim example explicit process sched-
uling with a priority scheme and preemption is usually needed. Other features usually includgticire e
timeouts and exception handling facilities.

9) other features: including nondeterminatecation, exception handling, verification issues and human
factors (i.e. ease of use).

The article concludes with a table comparing 13 concurrent languages using the criteria outlined
above. The languages compared are Ada, G&idcurrent Pascal, DEdison, GypsyMesa, Modula, Mod-
ula-2, Parlance, Path Pascal, PLITS and PL/1.

COMMENTS

A useful surey aticle with a large list of references (27) to the languages considerecvétdhe
title is a bit misleading since the article deals with concuyréincthe lage’ (ie; processes which are rela-
tively large chunks of code) and not with concursetitat can be exploited in vector or array machines or
data flav languages.

