
SHAW77
Shaw, M., Wulf, W. A., and London, R.L.; Abstraction and Verification in Alphard : Defining and Specify-
ing Iteration and Generators; CACM 20, 8 (August 1977).

SYNOPSIS

This paper is one of a series by the authors on the programming language Alphard. It presents
Alphard’s loop construct which is an amalgamation of the ’for’ and ’while’ loops of other languages. The
major difference in Alphard is that the loop control variable can "operate on abstract entities without
explicit dependence on the representation of those entities." The authors then derive proof rules for this
construct and show that in most cases they are equivalent to the proof rules given for the verification of pro-
grams in other languages.

The authors present the following example: if S is a set of integers and we want the sum of the mem-
bers of S, we would like to write

sum <- 0; for x S do sum <- sum + x

instead of the more conventional

for( sum=0, i=1; i <= sizeofS; i++ ) sum += s[i];
or
sum <- 0; p <- S;
while( p != NULL )

sum += S.value; p <- S.next;

which imply an array or a list representation respectively. The first notation suppresses detail about how the
iteration over an abstract data structure is performed. In Alphard this abstraction is accomplished using a
’form’. A form is an extension of a base data type that creates a new data type and defines the possible
operations on this new type. This new data type is defined by the operations that it optionally inherits from
the base type as well as new operations specified in the form body. A generator is a special type of form
with two specific operations ’&init’ and ’&next’ which are used to control iteration. For example the
Alphard statement

for x : gen(y) whileB(x) do ’statements’

has the following semantics
- call the &init function of the generator gen with parameter y , this gives x its first value and

creates a hidden boolean variable b
- if b is false terminate the loop
- for each iteration call the &next function which gives x and b their next values. Terminate if b

is false.

The authors also introduce a more specialized looping construct the ’first’ statement which is meant
to handle loops with early exits, for example searching a list for a particular value.

The rest of the paper is devoted to the verification of generators and the loops that they are used in.
This is done by including pre and post conditions with the &init and &next functions and an invariant
which applies to the whole generator. Correctness proofs for loops using the generator can than be derived.
Since in the general case the verification procedure can become very involved, proof rules for some simpler
constructs the ’pure’ while and the ’pure’ for are given. It is also shown that in some commonly occurring
cases generators can be proved to terminate (assuming that the loop body does).

COMMENTS



-2-

The stated goal of the Alphard project is "to increase the equality and the total lifetime cost of real
programs". The generator construct is designed to make programs more understandable through data
abstraction and more reliable through verification. However, as the authors note, it has restrictions in com-
parison with other loop constructs. In particular it is not possible to modify the structure on which the gen-
erator is operating within the loop that is controlled by the generator.


