SHAW77
Shav, M., Wulf, W. A., and London, R.L.; Abstraction and Verification in Alphard : Defining and Specify-
ing Iteration and Generators; CACM 20, 8 (August 1977).

SYNOPSIS

This paper is one of a series by the authors on the programming language Alphard. It presents
Alphard’s loop construct which is an amalgation of the *for’ and 'while’ loops of other languages. The
major difference in Alphard is that the loop contralrigble can "operate on abstract entities without
explicit dependence on the representation of those entities." The authors tivenpadmd rules for this
construct and shwothat in most cases there equvalent to the proof rules gén for the \erification of pro-
grams in other languages.

The authors present the following example: if S is a set of integers and we want the sum of the mem-
bers of S, we would lito write

sum <- 0; for x Sdo um <- sum + X
instead of the more cuentional

for(sum=0, i=1; i <= sizeofS; i++) sum += gJi];
or
sum<-0;p<-S;
while(p '= NULL)
sum += S.value; p <- S.next;

which imply an array or a list representation respelgti The first notation suppresses detail abowt tiee
iteration oer an dstract data structure is performed. In Alphard this abstraction is accomplished using a
form’. A form is an extension of a base data type that createsvaata type and defines the possible
operations on this metype. This nev data type is defined by the operations that it optionally inherits from
the base type as well asweperations specified in the form bodi generator is a special type of form

with two specific operations '&init" and '&ngt’ which are used to control iteration. For example the
Alphard statement

for x:gen(y) whileB(x) do 'statements’

has the following semantics

- call the &init function of the generator gen with parameter y , thiesgk its first value and
creates a hidden boolean variable b

- if b is false terminate the loop

- for each iteration call the &next function whiclves x and b their ngt values. Terminate if b
is false.

The authors also introduce a more specialized looping construct the ‘first’ statement which is meant
to handle loops with early exits, for example searching a list for a particular value.

The rest of the paper is\d#ed to the verification of generators and the loops thatateeused in.
This is done by including pre and post conditions with the &init and &next functions andaaiarih
which applies to the whole generat@orrectness proofs for loops using the generator can than bedderi
Since in the general case the verification procedure can becomewvedh proof rules for some simpler
constructs the 'pure’ while and the 'pure’ for argegi. It is also shown that in some commonly occurring
cases generators can bevabto terminate (assuming that the loop body does).

COMMENTS

-2-

The stated goal of the Alphard project is "to increase the equality and the total lifetime cost of real
programs". The generator construct is designed toenpedgrams more understandable through data
abstraction and more reliable through verificationwEeer, as the authors note, it has restrictions in com-
parison with other loop constructs. In particular it is not possible to modify the structure on which the gen-
erator is operating within the loop that is controlled by the generator.

