CASHIN79
Cashin, P.M., Joliat, M.L., Kamel, R.F., and LeskD.M.; Experience with a Modular Typed Language:
PROTEL; Proceedings of the Fifth International Conference on Software Engineering 1979.

Summary of Ideas

The authors conclude from their experience usin@HE. in large systems slelopment projects
since 1975 that modularity with strict type enforcement across module boundaries is necessary to keep the
projects manageable and maintainable.

Modules should separate their intaé sections from their implementation sections; multiple-inter
face sections can be useful; module name qualification of exported procedures is neegéaige apt of
modules, and there is a need to identify sets of modules as a whole.

The PROTEL solution to installing and using optional modules in production software by binding to
procedure variables works welllype transitvity from indirectly imported modules is goodvepall but
there are implementation efficignproblems with this.

Any large softvare project needs a configuration control system as wedl gstem to recompile
only modules that are actually affected by a change in another module.

Important Points

Separation of interface and implementation sectionsvgdeople using the module to simply look at
the interface and kmothat the implementation will ark. Thisalso localizes the effects of implementation
errors and the necessary recompilation, as well awiafiofor several different implementations of the
same interface, which is good for system configuration.

Multiple interface sections are good becausg tillew the separation of module functions by the
user (for example general andvileged functions in a file systemMultiple implementation sections are
good at minimizing recompilation and for imposing internal structure on a module.

A simple linear chain of inteaice sections and a single implementationyever, may be suicient
and more dicient. PROTEL uses an werted tree structure of interface and implementation sections.

Large softvare projects require the identification of sets of modules as subsystems (called AREAS in
PROTEL), this can be thought of as a configurable package of features.

Optional software in a large system should not be done through conditional compilation dué to inef
ciencies but rather by procedure variables which are set when the optional module is loadedasThis w
found to be very useful in aeé g/stems which cannot be brought down without difficulty (such as tele-
phone switching computers).

Type transitvity from other modules causes a problem in determining the scope of an interface type
change, butwerall this feature was found to be worthwhile.

Because interfaces are easy to change @TER, it was done often, causing much recompilation.
This required more sophisticated systems to handle recompilation of only those parts that were actually
affected by the changes.

Type checking in PETEL is done by imbedding interface information in object modules. The com-
piler then taks this information from each module that is visible in a module being compiled and preloads
the symbol table. This was found to be inefficient andvasystem was desloped to only imbed symbols
actually required (not just visiblaibused) and to keep symbol table definitions already loaded for multiple
implementation sections.

Relevance

This article summarizes actual experience thetsgeveaal justifications for the current belief that
languages to be used in large softwaregdpment projects need toenodule mechanisms that pide
type checking across module boundaries and that énlicit interfaces.



