LISKOV00
Liskov, Barbara et al.; Abstraction Mechanisms in CLU; CACM 20, 8 pp. 564-76.

The CLU programming language is primarily designed to support abstraction as a programming
methodologyLiskov maintains that CLU implements three kinds of abstraction - procedural, data and con-
trol.

Procedural abstraction in CLU is essentially the same as in most Pasdahdjlbages.

The primary data abstraction mechanism in CLU is the clusteluster is similar to a module in its
intent to hide information from the outside environmentydw@r, a duster goes further as a data abstrac-
tion. CLU takes the vier that the releant attributes of a data abstraction are not only the type of the data
but also the operations that are meaningful on that type. A cluster attempts to enforce this notion at the
compilation ledl.

A cluster is a set of procedures that operate on the underlying representatieganfuectaken from
Liskov's paper is that of a binary tree obvds. Inthis case the cluster would be a set of procedures that
represent meaningful operations on the tree, such as insertion, deletiorvensdltradlongwith the proce-
dures is an underlying representation, in this case records with pointers to other records. Cluster procedures
are accessed as if thperformed operations on the tree. An explicit typevemsion occurs in the proce-
dure heading of a cluster procedure tovennto the internal representation which is not visible outside.
Clusters may accept parametrized types. Thisvallone to implement a tree of words or integers gr an
other type with the same cluster implementation.

CLU provides a control abstraction for iteration. In most languages the 'for’ statement is restricted to
iteration wer integers. In CLU the 'for’ statement is constructed as follows:

FOR declarations IN iterator viacation DO
body
END;

An iterator irvocation is similar to a procedure. It re@s aguments in its imocation, and its 'yield’ state-
ment returns values which are assigned to #méables declared in the 'for’ statement. Thus the ‘for’
statement can be used to iteraterany data structure such as a tree or string, by providing an iterator to
step through the data structure.

CLU supports separate compilation and incremental prograsiogenent by means of the CLU
Library. The library contains a set of description units, one for each abstraction. The description unit con-
tains the interface specifications for the modules that implement that abstradctimdule that uses a par
ticular abstraction can be compiledee if the implementation for that abstraction does not yedtt.eA
module can refer to an abstraction by aame, and the library maintains a maping list between arbitrarily
named abstractions, their intecks, and the modules that implement them. This binding takes place just
before e&ecution.

Liskov's paper is in the form of a tutorial introduction to CLU by means of an extendeadpée. In
addition to abstraction mechanisms ldgkdso discusses some features of the CLU implementation and
semantic considerations. Theykfeature is the use of descriptors as a naming mechanism in the implemen-
tation. Theseadescriptors point to objects, and thus variables refer to descriptors not to the underlying
objects. Variables may share objects by having their descriptors point at the same object.

Overall the paper is easy to understand, wejbtized and provides a goodeanview of some of the
key features of CLU.



