
LISKOV00
Liskov, Barbara et al.; Abstraction Mechanisms in CLU; CACM 20, 8 pp. 564-76.

The CLU programming language is primarily designed to support abstraction as a programming
methodology. Liskov maintains that CLU implements three kinds of abstraction - procedural, data and con-
trol.

Procedural abstraction in CLU is essentially the same as in most Pascal-like languages.

The primary data abstraction mechanism in CLU is the cluster. A cluster is similar to a module in its
intent to hide information from the outside environment, however, a cluster goes further as a data abstrac-
tion. CLU takes the view that the relevant attributes of a data abstraction are not only the type of the data
but also the operations that are meaningful on that type. A cluster attempts to enforce this notion at the
compilation level.

A cluster is a set of procedures that operate on the underlying representation. An example taken from
Liskov’s paper is that of a binary tree of words. Inthis case the cluster would be a set of procedures that
represent meaningful operations on the tree, such as insertion, deletion and traversal. Alongwith the proce-
dures is an underlying representation, in this case records with pointers to other records. Cluster procedures
are accessed as if they performed operations on the tree. An explicit type conversion occurs in the proce-
dure heading of a cluster procedure to convert to the internal representation which is not visible outside.
Clusters may accept parametrized types. This allows one to implement a tree of words or integers or any
other type with the same cluster implementation.

CLU provides a control abstraction for iteration. In most languages the ’for’ statement is restricted to
iteration over integers. In CLU the ’for’ statement is constructed as follows:

FOR declarations IN iterator_invocation DO
body

END;

An iterator invocation is similar to a procedure. It receives arguments in its invocation, and its ’yield’ state-
ment returns values which are assigned to the variables declared in the ’for’ statement. Thus the ’for’
statement can be used to iterate over any data structure such as a tree or string, by providing an iterator to
step through the data structure.

CLU supports separate compilation and incremental program development by means of the CLU
Library. The library contains a set of description units, one for each abstraction. The description unit con-
tains the interface specifications for the modules that implement that abstraction.A module that uses a par-
ticular abstraction can be compiled even if the implementation for that abstraction does not yet exist. A
module can refer to an abstraction by any name, and the library maintains a maping list between arbitrarily
named abstractions, their interfaces, and the modules that implement them. This binding takes place just
before execution.

Liskov’s paper is in the form of a tutorial introduction to CLU by means of an extended example. In
addition to abstraction mechanisms Liskov also discusses some features of the CLU implementation and
semantic considerations. The key feature is the use of descriptors as a naming mechanism in the implemen-
tation. Thesedescriptors point to objects, and thus variables refer to descriptors not to the underlying
objects. Variables may share objects by having their descriptors point at the same object.

Overall the paper is easy to understand, well organized and provides a good overview of some of the
key features of CLU.


