
FITTER00
Fitter, M., Green, T.R.G.; When do diagrams make good computer languages?; International Journal of
Man-Machine Studies 11.2 pp. 235-262.

A good paper discussing the major issues in the use of diagrammatic notation in programming.
Heavily illustrated with examples and references to experimental results.They push the point that we do
not know how to do it right, and that experimentation is necessary.

The authors separate coding notations into perceptual and symbolic.Symbolic notations are the tra-
ditional text string notations, and other notations, where the meaning has to be inferred from a symbolic
encoding. Ina diagrammatic notation, the meaning should be perceptually obvious (i.e., should not require
high level mental processes to decode).Hence, diagrammatic notations are considered perceptual nota-
tions.

The main body of the text deals with five key principles for designing and selecting perceptual nota-
tions. Theseare: only relevant information should be perceptually coded; the user should be restricted to
comprehensible forms; important information should be redundantly recoded; the coding should reveal the
underlying processes and the diagrams must be revisable. Eachof these principles is discussed in detail,
and illustrated with many examples.

The paper provides a very good introduction to diagrammatic programming notations.

"Our conclusion is that if a graphic notation can reveal the structure inherent in the underlying data,
or the process by which entities are manipulated, then it will be superior to a linear symbolic language."p.
255

:Different programs should be perceptually as different as possible." p. 259


