FITTEROO
Fitter, M., Green, T.R.G.; When do diagrams makod computer languages?; International Journal of
Man-Machine Studies 11.2 pp. 235-262.

A good paper discussing the major issues in the use of diagrammatic notation in programming.
Heavily illustrated with examples and references tpeximental resultsThey push the point that we do
not knav how to do it right, and that experimentation is necessary.

The authors separate coding notations into perceptual and sym®giitholic notations are the tra-
ditional text string notations, and other notations, where the meaning has to be inferred from a symbolic
encoding. Ina dagrammatic notation, the meaning should be perceptually obvious (i.e., should not require
high level mental processes to decoddjence, diagrammatic notations are considered perceptual nota-
tions.

The main body of the text deals withdiley principles for designing and selecting perceptual nota-
tions. Theseare: only relgant information should be perceptually coded; the user should be restricted to
comprehensible forms; important information should be redundantly recoded; the coding srealithee
underlying processes and the diagrams must \bsatde. Eaclof these principles is discussed in detail,
and illustrated with manexamples.

The paper provides a very good introduction to diagrammatic programming notations.

"Our conclusion is that if a graphic notation cavead the structure inherent in the underlying data,
or the process by which entities are manipulated, then it will be superior to a linear symbolic language.”
255

:Different programs should be perceptually as different as possible." p. 259



