
INGALLS81
Ingalls Daniel H.H.; Design Principles Behind Smalltalk; Byte 6, 8 (August 1981).

Summary of Ideas

A system should be built which can be fully understood by one person and which has a minimum set
of unchangeable parts which are general and uniform.

Computer languages should provide a communications framework similar to that used in human
communication. Theselanguages should support the idea of an object, provide a uniform means for refer-
ring to objects and provide automatic storage management of objects.

Objects should be sent messages indicating actions to be performed by them.

"A language should be designed around a powerful metaphor that can be uniformly applied in all
areas".

Modularity is needed to assist in complex human tasks.Similarly, the ability to classify similar
objects is inherent in human thinking and should be present in a computer languages (via classes and inher-
itance).

Programs should only specify behaviour and not representation of objects.

Independent components in a system should be factored out so to appear in only one place.This can
be done with classes and inheritance.

"Every component accessible to the user should be able to present itself in a meaningful way for
observation and manipulation". This is done with the message protocol for objects.

"An operating system is a collection of things that don’t fit into a language.There should not be
one."

Important Points

If a single person cannot entirely understand a system then there will be an impediment to creative
expression. Similarly, a system that cannot be changed or is not sufficiently general or consistent will also
pose an impediment. Small talk thus has a minimum set of unchangeable parts.

Smalltalk provides an object oriented model with automatic storage management and a message
sending technique as the means is initiating actions.

Like LISP which is modelled on lists and APL which is modelled on arrays, Smalltalk is built around
the powerful uniform metaphore of communicating objects. Thus large applications are viewed in exactly
the same way as the fundamental units of the system.

Both modularity and classification with inheritance allow Smalltalk to be simple yet manage com-
plexity very well. Specifying the behaviour and not the representation of objects also allows great flexibil-
ity for further extension of the language.

Factoring is encouraged by the fact that a class in Smalltalk inherits behaviour from its superclass.
Because the system is built on a small set of primitive operations, a small improvement in the performance
of one of these operations will yield great improvement in the system.

Smalltalk has no operating system as far as other languages are concerned, rather it incorporates
operating system primitives in the Smalltalk system itself.

Relevance

This article outlines the philosophy behind object oriented languages in general and Smalltalk in par-
ticular. Object oriented languages are a departure from the mainstream language model and this paper
gives some of the justifications for doing so.


