WIRTH74
Wirth, N.; On The Design of Programming Languages; Procedures of the IFIP Congress 74, pp. 386-393,
North Holland, Amsterdam, North-Holland Publishing Co.

SYNOPSIS

The paper presents the autsa'guments for simplicity in programming languages. A goal which
should be achied through "transparencand clarity of its (the language’s) features and by a regular struc-
ture, rather than by utmost conciseness and unwanted generality".

The author first considers some\pogeis attempts to introduce simplicity through generaiitypar-
ticular his eperience with the language Euler and concludes that such an approach leads to a language
where
1) the compiler cannot help the programmer in detecting mistakeseiagly eerything is a Igd
program.
2) conciseness and lack of redundeimcthe program makit difficult for the human reader to grasp
its meaning.

He then considers three features commonly included in highlenguages which he considers a
throwback to machine and assembly coding, ang aarore restricted version of these features could be
included without the disadvantages of the fully generalized versions. These features are

1) goto’s: The programmexr’'desire for gotas can be satisfied by more Xible control statements.
e.g. the 'while’ and repeat’ statements for repetition and tharifl 'case’ statements for selection.

2) pointers or references: Here full generality leads to the aliasing problem. His more resricted v
sion allows pointers to be bound to only a single type, and pointers may only refer to anorgrialssy
(partially solving the aliasing problem).

3) data types: Instead of allng untyped operands that force the programmer tavkhe underly-
ing machine representation , the record (as in Pascal) shiftautiisnbto the compiler while the language
retains the conceptual simplicity of the data type.

The main point in these sections is that simplicity can be\ahtarough carefully chosen restric-
tions of more general concepts. Thesaneples also provide justification for some of the featuresasfdt
since the restrictions he proposes are all preserasodP Theauthor also considers some other pitfalls of
language design. The restrictions chosen ageabust be compatible, " the combination obteeemingly
harmless and well understood features maae ltlsastrous décts". There should be no hidden fiw@én-
cies, the programmer shouldveaa gpod idea of the computational effortatved in a particular feature.

The paper ends with a list of hints, conclusions and goals that the presgactiuage designer
should consider.
COMMENTS.

Seen from 1984, Wth’'s aguments for simplicity in programming languages (advocated in the early
70's) seem almost obvious since maf these approaches arenmnthe 'accepted wisdom’. The papemhro
evea contains maw valuable insights from arxperienced language designer which are still valid today and
it gives a good overview of programming language design at that time elucidating some of the ’historical’
reasons for features seen in todgybgramming languages.



