
GEHANI79
Gehani, N.; A High Level Data Structure - the Grid; Computer Languages, Volume 4, pp. 93-98.

This paper proposes a data structure called the grid, andclaims that programs writtenusing grids
are smaller, clearer and more easily modifiable than those that are not.A notation for grids inPascal is
given, and some examples are used to illustrate the effectiveness of this data structure.

In order to achieve program clarity, the data structureswe useshould provide a natural representa-
tion of our data. But in many applications, we need to represent data which is notarray-like. It may have
an irregular shape, or even be unconnected. Clearly, an array or group of arrays could be used to simulate
such data,but this would notbe a natural representation, and would thus result in several problems.Gen-
erating and testing for valid indices would have to be done explicitly, clarity and modifiability would be
lost, and parts of the area (for example borders) could not be referenced collectively.

The grid solves all of these problems. Grids aredeclared as aunion of some component arrays (not
necessarily connected), minus the union of some other arrays.For example,

GRID [1..50,1..100 MINUS 20..30,20..80] OF real
defines a rectangular ring, 20 units thick.In order to make certain grid definitions easier, the bounds of a
component’s dimensions can be integer functions of another dimension’s coordinates. For example,

GRID [i in 1..30, i..30]
defines a triangle with corner points (1,1), (1,30), (30,30).

A FOR statement isdefined which allows for easy iterationsthrough the elements of a grid.The
form of this statement is

FOR i1, i2, ... , in IN domain(g) DO S
where g is a grid,
i1...in are integer variables

(loop counters),
n is the number of dimensions of g, and
S is a statement.

This FOR causes S to be executed once for every valid subscript of the grid, witheach of the i variables
holding the value of its associated dimension’s coordinate. The iterations are donein an unspecified
order, howev er, we can specify that the iteration over each dimension be ordered either in increasingor
decreasing value by adding "inc" and "dec" clauses.For example

VAR b :GRID [1..4,1..4 MINUS 2..3,2..3 PLUS 6..6,6..6]
of char

FOR i, j IN inc(1) dec(2) domain(g) DO S

has the same effect as

FOR i = 1 to 6 DO
FOR j = 6 DOWNTO 1 DO

IF indomain (g, i, j)
THEN S

where indomain is a built in function which returns trueif the subscript is valid for the given domain.

Finally, a notation is given for naming groups of grid components for easy reference to parts of a
grid. Whenwe wish to reference a section which cannot be described as a group of the grid’s components,
a notation for defining and referencing subgrids is also available. In both of these extensions, no extra
space need beallocated.

It is clear from examples given that the grid reflects nonarray-like shapes naturally and allows
shorter, more readable programs. More importantly however, changes in agrid declaration require no
alterations to the code which accesses that grid.


