GRIES77
Gries, D., Gehani, N.; Some Ideas on Datp€eE in High-Leel Languages; CACM 20, 6 (June 1977) pp.
414-420.

This paper takes the notion that a data type is not only a set of valtalsda set of primite qoer-
ations on thesealues. Itthen explores this notion by applying it tocheoncepts: the domains of arrays
and generalized procedures.

The domain of an array is the set ajdesubscript values of the arrayrhe authors write the domain
of an array a as domain(a) and consider it to be a data Types, no matter what dimension an array has
or what type its indices are, declaring an nidas:

var i;:domain(a)
males i the correct type to inde. For example, usingASCAL-like rotation, if we declare the folldng:

suit = (clubs,diamonds,hearts,spades);
var b:array[suit,1..13] of integer;
var j:domain(b);

then j is a pair of variables, the first taking on onbydlealues of suit, the second taking ory amteger in
the range 1 to 13.

An interesting extension of this comes in iteration. The authors deftngetweral types of inded
loops:

for <variable> in ordered <ordered set of values> do S
for <variable> in unordered <set of values>do S

where "unordered" indicates that the order in which values in the <set of values> are assigagdii@s<v
is immaterial. Thus, for example, to sumeothe array b (assuming b has been assigned values), we can
write:

var sinteger;

s:=0

for i in unordered domain(b) do
s:=s+ Hfi);

The second concept is a generalized (or generic) procedure which operates on a parameter of an
data type for which certain basic operationgehbeen defined.For example, if we hae a pocedure that
sorts an array of values, then it reakno difference whether the values are integers, reals, charactess, or an
other data types as long as the assingment operat@nd the ordering operater=, are defined on that
type of array value.

This concept brings up the problem of typewasions. Br example, suppose that the abdoop
that sums the elements of an array was a procedure that sunyrethgirvalues for which the operator +
was defined. Themwe would declare s to be of the same type as the array values, but then the statement

s:=0

could cause a type "clash" since 0 is of typegateTo snlve this problem, the authors argue avdur of
explicit corversion of types by primitie gperations that do the cesrsion. Thusto initialize s, we could
write:

s := onvertfrominteger(0).

Corvertfrominteger would be an ‘@rloaded" function in the sense that mduinctions by that name
would exist, one for each type t to which ibwd be possible to ceeart from integer It would be the com-
piler’s job to decide from context which function is actually to be called.

The paper then discusses the implementation of the proposed features and puts forth one method of
compilation that seems quite feasible.



-2-

The notions proposed in this paper make of abstraction in the sense thalythiele details. Fur-
ther, they generalize some existing highvl language features into more "natural”" forms. These notions
are releant to the currentwlution and deelopment of programming languages asythee aimed at sim-
plifying and making more consistent the programming tooéilable to a user while at the same time
increasing the power of these tools by generalizing them.



