WHARTONS83
Wharton, R.M.; A Note onypes and Prototypes; ACM SIGPLAN Notices 18, 12 (December 1983) pp.
122-125.

In this paperWharton discusses the notion of "type" in programming languages and introduces a
competing, bt simpler notion "prototype”. The paper asserts that a language with prototypes has the same
(computational) power as one with types yet with fewer rules and a program written in a language with pro-
totypes will hae a snaller name space than the corresponding program written in a language with types.

The author bgins with a dictionary definition of the bsterms and then discusses the concept of a
type as used in the language Pascal. He notes thas@alRhe rules for composing types are cormahel
in Ada the are almost incomprehensible. For example asdal you can lva sts of scalars and arrays of
sets but not sets of arrays. He also points out tha&sodP the programmer has the option of naming the
type or using it anonymously i.e.

type range =1 .. 10;
var X : array [range] of char;
vary:array [1..10] of char;

and worse still there are somageal implementations where there are restrictions as to whengnam
types can be used, i.e. procedure formal parameters must be declared with named types.

After exposing the inconsistencies and comigiles of Pascal types, Wharton presents his construct.
In the prototype model, the language containswapiémitive variables (rather than types) i.e. ghateger,
... and the programmer declaresvriastances of variables with declarations of the form:

declarealikeinteger;
declareblikea;

That is, the process of declaring a variable can be viewed as "cloning" a variable from a prototype. Sub-
ranges and arrays can be declared using similar syntax i.e.

declare bounds = lower .. upper;
declare vector =array [lower .. upper likereal;

The author closes the paper with a discussion of the advantages of protetypeges. First, proto-
types are a simpler concept since a prototype is simply a variable §imitomposite) whereas a type is
a dass of ariables. Heargues that in Pascal there can be confusion about tleeedi€es between types
and \ariables and a programmer might try an perform an operation on a type which is only correct for a
variable, etc. He also argues that in Pascal one has the option of naming the type which is only adds unnec-
essary complexity and serves to promote variation and confusion among programmingHsiyteser,
prototypes oid these problem completely and reduce the program name space since there are no types to
name.

This paper serves as an introduction to eehoonstruct to replace the type concept in Pascal lik
languages, heever the author fails to gie a ill specification of the mechanism and does not fully address
the issue of composite structures. In particuiar dbes not discuss record structures or the semantics of
creating nes variable prototypes.

