
PERKINS81
Perkins H.; Lazy I/O is Not the Answer; ACM SIGPLAN Notices 16, 4 (April 1981) pp. 81-88.

In this paper, Perkins discusses the synchronization problems with input from terminal devices inthe
programming language Pascal. He describes one of the solutions - lazy I/O - and argues why this is not a
good solution. In its stead he presents another solution and his arguments as to why it is superior to the lazy
I/O approach.

In Pascal, a file is a sequence of items and each file has a buffer variable associated with it, contain-
ing the item that will be returned by the next call to the READ procedure. In the case of text files, this one
character "look-ahead" implies that after a file is RESET, the file must be read so that the buffer variable
will contain the next character to be returned by READ. Thus, in the case of terminal input, the file is
RESET at the start of the program which means that the file must be read before any statements can be
executed. Thus, it is not possible to prompt the user before he has to enter the initial input.

A second problem occurs with the READLN procedure. After executing READLN, the buffer vari-
able must contain the first character of the next line. However, what is usually meant by READLN(A,B,C)
is read the values of A, B, and C and skip to the beginning of the next line. If READLN(A,B,C) is used to
read 3 numbers, it will do so and then advance the file position to the beginning of the line beyond the one
containing the third number.

One solution to the problem, lazy I/O, delays the actual input operation until the program actually
references the buffer variable (calls EOLN, EOF, READ, or READLN). The RESET operation is used to
open the file and it sets a flag indicating that the buffer has not had a value read in yet. Thus each time one
of the above procedures is called, the flag is checked and the file is read if necessary.

The author then argues that this solution has a number of problems. First, programs that depend on
lazy I/O are not portable since not all Pascal implementations use it. Secondly, programs that depend on
lazy I/O are non-standard (i.e. do not conform to the ISO Pascal standard). Third, lazy I/O has rather con-
fusing semantics and does not completely hide the programmer from the one character look-ahead inherent
in Pascal (i.e. invoking EOF or EOLN can cause the file to be read which is not normally the case). The last
argument Perkins presents is that lazy I/O is not efficient because each I/O operation causes the flag vari-
able to be checked, etc and this inefficiency is contrary to one of the design goals of Pascal.

The solution proposed by the author is as follows: Put a slash (/) in the program statement after the
name of each file to be used for interactive input. When such a file is RESET, the file is put into a state
where it thinks there is a new line separator in the buffer. Thus, to read a new line from the terminal, the
programmer should first call the READLN procedure with no arguments (other than the file) and he should
never use READLN with any variables in its parameter list.

The author then proceeds to argue that programs which use this solution are much easier to transport
to other systems - with or without lazy I/O. If the system does not support lazy I/O then the program will
wait for immediately after the standard input file is RESET, in which case the user should enter a carriage
return to put the buffer in its line-separator state.The program will then continue with proper synchroniza-
tion. If the system does support lazy I/O then a READ statement must be added to the beginning of the pro-
gram and a carriage return entered at the beginning of program execution to get proper synchronization.

This paper points out the problems with input synchronization in Pascal, and exposes the problems
with the lazy I/O solution. The author presents a useful solution, but one wonders whether the programs
really are portable since they execute differently and in some cases still need to be modified to make them
work. Also, the solution would also appear to restrict the usefulness of some of the Pascal procedures, i.e.
the READLN procedure

’ ’


