PERKINS81
Perkins H.; Lazy I/O is Not the Answer; ACM SIGPLAN Notices 16, 4 (April 1981) pp. 81-88.

In this paperPerkins discusses the synchronization problems with input from termiviaedeinthe
programming languageaBcal. He describes one of the solutions - lazy 1/0O - and arguethistis not a
good solution. In its stead he presents another solution and his arguments a# te superior to the lazy
I/O approach.

In Pascal, a file is a sequence of items and each file h&feaariable associated with it, contain-
ing the item that will be returned by the next call to the READ procedure. In the case of text files, this one
character "look-ahead" implies that after a file is RESEE file must be read so that thaffbr variable
will contain the ngt character to be returned by READ. Thus, in the case of terminal input, the file is
RESET at the start of the program which means that the file must be read bgfat@ements can be
executed. Thus, it is not possible to prompt the user before he has to enter the initial input.

A second problem occurs with the READLN procedure. Aftaacating READLN, the hffer vari-
able must contain the first character of thetiee. Havever, what is usually meant by READLN(A,B,C)
is read the alues of A, B, and C and skip to the beginning of the next line. If READLN(A,B,C) is used to
read 3 numbers, it will do so and then advance the file position todheiveg of the line beyond the one
containing the third number.

One solution to the problem, lazy I/O, delays the actual input operation until the program actually
references theuffer variable (calls EOLN, EQRREAD, or READLN). The RESET operation is used to
open the file and it sets a flag indicating that thiéeb has not had aalue read in yet. Thus each time one
of the aboe procedures is called, the flag is checked and the file is read if necessary.

The author then gues that this solution has a number of problems. First, programs that depend on
lazy 1/0 are not portable since not alideal implementations use it. Seconglpgrams that depend on
lazy I/O are non-standard (i.e. do not conform to the 186c#& standard). Third, lazy I/O has rather con-
fusing semantics and does not completely hide the programmer from the one character look-ahead inherent
in Pascal (i.e. woking EOF or EOLN can cause the file to be read which is not normally the case). The last
argument Perkins presents is that lazy 1/O is nfitieht because each 1/O operation causes the #iag v
able to be checked, etc and this inefficieisocontrary to one of the design goals of Pascal.

The solution proposed by the author is as fedioPut a slash (/) in the program statement after the
name of each file to be used for intenaetinput. When such a file is RESERe file is put into a state
where it thinks there is a weline separator in theufer. Thus, to read a meline from the terminal, the
programmer should first call the READLN procedure with rquarents (other than the file) and he should
never use READLN with al variables in its parameter list.

The author then proceeds tgae that programs which use this solution are much easier to transport
to other systems - with or without lazy 1/O. If the system does not support lazy 1/O then the program will
wait for immediately after the standard input file is RESETwhich case the user should enter a carriage
return to put the differ in its line-separator statd.he program will then continue with proper synchroniza-
tion. If the system does support lazy I/0O then a READ statement must be added to the beginning of the pro-
gram and a carriage return entered at the beginning of progegntien to get proper synchronization.

This paper points out the problems with input synchronizatioragtd, and exposes the problems
with the lazy I/O solution. The author presents a useful solution, but one wonders whether the programs
really are portable since thexecute diferently and in some cases still need to be modified tce riahkn
work. Also, the solution would also appear to restrict the usefulness of some of the Pascal procedures, i.e.
the READLN procedure



