FEUER82
Feuer A.R. and Gehani, N.H.; A Comparison of the Programming Languages C and Pascal; Computing
Suneys 14, 1 (March 1982) pp. 73-92.

With ary computer language, the design philosppénds to affect the potential applications for
which that language is suitabl@his paper looks at twpopular languages, C and Pascal, in an attempt to
shav how their differing histories and design philosophies affect their suitability for a variety of program-
ming domains.

Historically, C was dened from B and BCPL, both of which are typeless languages typically used
for implementing operating systems and language proces&arsjor adwance of C was the introduction
of typed variables into the language, while still allowing an efficient interface to the computer hardware.

Pascal, on the other hand, was influenced by ALGOL 60 and ALGQland was designed as a
direct response to the size and comityeof ALGOL 68. The major intents of Pascal led to theettep-
ment of a high-leel machine, from which it is very difficult to escape to the underlying hardware.

The design goals of the twanguages were considerablyfelient. Restrictionsvere built into Rs-
cal to help in the delopment of reliable programs by enforcing a disciplined structure. By strongly
enforcing these restrictions, Pascal is intended to help the programmer detect programming errors, as well
as malk it difficult to access memory locations outside of the progralta area. The permissness of
C, havever, was intended to ale a wide range of applications. The basic languages wiade small by
omitting such features as input/output and string processing, sincasGovbe sufficiently flexible that
these facilities, and others dithem, could be built as required.

This difference in design philosophies is reflected in the formal definitions of thiathguages. A
precise specification of theafcal syntax wasvailable from the start, and an axiomatic definition for most
of the semantics was not long in appearing. By contrast, there has yet to be published a complete definition
of the C syntax, and only a denotational definition for the semantics of most of C (considered to be of less
use in proving program correctness) has appeared.

The authors describe most of the features of C and Pascal, first by means of anvidlesénatple (a
binary search), and then a feature-by-feature basi$hey group the features into fvmain catgories
(Data Types, Expressions, Statements, Routines and Program Structure, and Input/Output), and conclude
the exposition of the features within each category with a discussion of the pros and cons ©fiseasdrc-
tion assumes that the reader is familiar with programming language concepts in general, but not necessarily
with either C or Pascal, and is very well written.

The final section takes four different programming domains (Business Data Processing, Scientific
Programming, Programming for Operating Systems, and Programming for System Ultilities), and attempts
to determine the suitability of C ands$tal to each of these domains by first defining what language fea-
tures are useful for each of the domains, and tkamiming which of those features (if any) are present in
each of the tw languages.

The overall conclusion of the authors is that programs asd2l tend to be more reliable than those
written in C, primarily because of the much stronger typing presemtsicaP Additionallybecause &scal
supports a richer set of data typeaséal programs tend to be more readable and portable than C programs.
However, because of the figbility and lack of restrictions in C, it can be used in a larger variety of pro-
gramming domains than camagtal. The are, of course, careful to note that "just because a language can
be used for a particular application does not mean that it should be".

All in all, this paper seems to provide an excellerneple of hav the design goals for a language
must be kept in mind whewauating that language.

