WINOGRAD79
Winograd, Terry; Beyond Programming Languages; CACM 22, 7 (July 1979) pp. 391-401.

Many experts today are of the opinion thatadable programming languages are inadequate for
building computer systems. Indeed, the quandary which we face may be much more serious than that of
the early 195@ which led to the delopment of high leel |languages, since the problems for which solu-
tions are currently being sought are much harder to solve, and the cost of not solving them is correspond-
ingly higher Perhaps at least part of the problem is due to the fact that theof/lgrogramming and pro-
gramming languages has not changed to reflect current trends.

A widely accepted vig is that programmers aregected to design algorithms for carrying out tasks,
and to specify these algorithms as a precise series of instructions which computers are expected to follo
High level programming languages exist to simplify the writing of these instructions wdprg "basic
building blocks" which are of higher Vel than those of the computeThe problem with this approach,
however, is that the nature of computer programming has changed: computersvammrecommonly just
components in lger, more compl& systems (as opposed to being complete systems on their own), and the
"building blocks" required for systemswbopment are not at thevd of programming language con-
structs, ot rather are "subsystems" or "packages" of data structures, programs and prétddiisnally,
much more time (and moykis spent integrating, modifying and explaining existing programs, rather than
writing new programs.

The emphasis should be on a declaeatiather than imperate, approach. Rathethan specifying
sequences of instructions to be folkd to complete a task, instead describe, in as formal a manner as pos-
sible, what is to be done, and to what. This approach is consistent with current work in specification lan-
guages, structured programming formalisms and denotational theories of programming semantics, all of
which emphasize the description of the results of the computations, rather than the instructiwed follo
obtain those results.

As an example of whthis shift is required, Wograd presents a "muéting example" of anxden-
sion to a room scheduling system. While the proposed system is quite x@kvphegrad describes it as
"just at the edge of our programming powers today"), eachkiéhil component, or some variation there-
upon, definitely is inxastence na. The difficulty comes in trying to integrate the various components into
a sngle entity An added complexity is also presented if it is assumed that the pergiog bha male the
changes to the existing components will not be compledehilir with them, and mayen be a Bw pro-
grammer.

Clearly, there are multiple "domains" to such a comp#gstem. Whograd describes three such
domains (subject, interaction, and implementation), and demonstratethér@ are multiple vigpoints
possible within each of these domains. Rather than simplifying the task, these indepemgemhtaeand
domains would seem to further complicate mattersw,kfwen, is one to specify computer applications?

Examining hav people deal with understanding complaroblems, it has been noted that wafiog
imprecision (when precision is not required) can actuallyeserveduce compbaty. This phenomenon,
and others lik it, were first obserd in the study of natural languages, so it would seem logical to attempt
to apply various principles from the area of Atrtificial Intelligence to the problem at hand.

The problem presented is clearly a veryidifit one, and one which cannot be solved within a single
paper While Winograd proposes some plausible approaches, much rodréswequired before a feasible
alternatve o todays high level programming languages and computer systems can\moged. The
dilemma being faced, though, is a very real one, and the directions indicated within this paper appear to be
very promising.



