GEHANI80
Gehani, N.; Generic Procedures: An Implementation and an Undecidability Result; Computer Languages,
\Volume 5, pp. 155-161.

A generic procedure is one in which some or all information aboutythes ofits formal parame-
ters is unspecified, allowing one procedure to handleatddc of mary non-generic procedures. This is
especially usefulvith modern languages where the user can definedaéa types. Generic procedures
also mak portability across typepossible, and provide a ogmient means of abstraction. Despite their
adwantages, generiprocedures he ot been popular because yhgpically have ineficient implementa-
tions, and allw for little compile time checking.

Gehani briefly gplains a syntax that has been proposed for generic procedures in Pascal, and
describes an efficient implementation method. He then points out a major problem with this scheme and
suggests some possible solutions.

The notation presented is quite simplét. allows the entiretype of a formal parameter to be
unknowvn, or just some part of it (for example, the size of an array type). It alsesatioe to usethe
generic type for local variables and to reference it in boolean expressions, which enables a conditional
branch dependent upon the type of a paramétiso, a generic type or some part of it may be restricted to
a certain group of types, to woid having to write extra tests for a type with which the procedure
shouldnt be alled.

The suggested implementatiowvadlves compile-time comrsion ofa generic procedure to a proce-
dure with specific types, once for each call to the generic procedure. Of course, calls using tyéshfor
a procedure has already been generated need not cause the creation of ansitthver Vhiscreation of
multiple versions of a procedure may appearficieht, but of course the user wouldvleaop write the \er-
sions otherwise.

As previously mentioned, the processing of generic procedsrdene at compile timeHowever,
there are certain recuvsi @ll sequences that would result in the creation of an infinite numbesrsibns
of the procedure. This is called infinite attribute generation. The ayttwes that no algorithm >asts
for detectingthis problem, by performing duction on another undecidable problem.

It is concluded that there aredwpossible solutions to this problem. Theocessing of procedure
calls that result in recur@ alls with a diferent set of parameter types could be postponetl run
time. Thiswould eliminate infinite attribute generation, buvdlves added runtimeverhead. Alterna-
tively, we uld disallav certain recursie procedure calls that might cause infinite attribute generation.
This may seemery restrictve, but the author notes that the types of calls that would be thus prohibited are
expected to be rarely called.



