
GEHANI80
Gehani, N.; Generic Procedures: An Implementation and an Undecidability Result; Computer Languages,
Volume 5, pp. 155-161.

A generic procedure is one in which some or all information about thetypes ofits formal parame-
ters is unspecified, allowing one procedure to handle thework of many non-generic procedures. This is
especially usefulwith modern languages where the user can define new data types. Generic procedures
also make portability across typespossible, and provide a convenient means of abstraction. Despite their
advantages, genericprocedures have not been popular because they typically have inefficient implementa-
tions, and allow for little compile time checking.

Gehani briefly explains a syntax that has been proposed for generic procedures in Pascal, and
describes an efficient implementation method. He then points out a major problem with this scheme and
suggests some possible solutions.

The notation presented is quite simple.It allows the entiretype of a formal parameter to be
unknown, or just some part of it (for example, the size of an array type). It also allows one to usethe
generic type for local variables and to reference it in boolean expressions, which enables a conditional
branch dependent upon the type of a parameter. Also, a generic type or some part of it may be restricted to
a certain group of types, to avoid having to write extra tests for a type with which the procedure
shouldn’t be called.

The suggested implementation involves compile-time conversion ofa generic procedure to a proce-
dure with specific types, once for each call to the generic procedure. Of course, calls using types forwhich
a procedure has already been generated need not cause the creation of another version. Thiscreation of
multiple versions of a procedure may appear inefficient, but of course the user would have to write the ver-
sions otherwise.

As previously mentioned, the processing of generic proceduresis done at compile time.However,
there are certain recursive call sequences that would result in the creation of an infinite number ofversions
of the procedure. This is called infinite attribute generation. The authorproves that no algorithm exists
for detectingthis problem, by performing areduction on another undecidable problem.

It is concluded that there are two possible solutions to this problem. Theprocessing of procedure
calls that result in recursive calls with a different set of parameter types could be postponeduntil run
time. Thiswould eliminate infinite attribute generation, but involves added runtime overhead. Alterna-
tively, we could disallow certain recursive procedure calls that might cause infinite attribute generation.
This may seem very restrictive, but the author notes that the types of calls that would be thus prohibited are
expected to be rarely called.


