LISKOVS83
Liskov, Barbara, and ScheifleRobert; Guardians and Action&inguistic Support for Robust, Disttiited
Programs; ACM TOPLAS 35, 3 (July 1983) pp. 381-404.

Distributed programs are programs in which modules residexaadte at communicating, but (typi-
cally) geographically distinct, locations. The authors presentvarview of an integrated programming
language and system, called ARGUS, thaswdesigned to ganize and maintain distributed programs
effectively.

ARGUS has tw main concepts:guardians and actions. The ARGUS programming language is
built upon the CLU languageAn ARGUS distributed program is composed of a group of guardians, each
of which encapsulates and controls access to one or more resources (e.g., databases)or@eardians
provide a mechanism for reliable and internally concurrent modulafitgy maintain local control wer
their local data; no other guardian may access or manipulate the data .diféwthguardian prades
access to the data throughandler calls, but the actual access is performed inside the guardia@.
guardian is to guard its data in threays: bysynchronizing concurrent access to the data, by requiring
that the caller of a handler vethe authorization needed to do the access, and by making enough of the
data stable so that the guardian as a whole carveuraishes without loss of information. After the crash
of a guardiars node, the language support system recreates the guardian with the stable objects from stable
storage.

While guardians are the unit of modulariigtions are the means by which distributed computation
takes place. Actions pxade atomic computations which are both indivisible and regsable: thg either
fully succeed ¢dommit) or fully fail (abort). Whenan action aborts, the effect is as if the action hagrne
begun: all modified objects are restored to their previous states. When an action commits, all modified
objects tak on heir nav states. Atop-level action starts at some guardian. This action can perform a dis-
tributed computation by making handler calls to other guardians; those handler calls easaltaaé still
more guardians; and so on. Since the entire computation is an atomic action, it is guaranteed that the com-
putation is based on a consistent distiglol state and that, when the computation finishes, the state is still
consistent (assuming in both cases that user programs are cofrettdhs may be hierarchically struc-
tured and nested to cope withilfires and provide concurrgnwithin an action. An action may contain
ary number of subactions, some of which may be performed sequerdiaiig concurrently The authors
believe that the single most important application of nested actions is in masking communication failures.

In the authors’ model, distiibed programs run on nodes connected by a communicationsrketw
Each node consists of one or more processoramdus kinds, one or morevigds of memory and ary
number and type of externalviees. Whileneither the netark nor the nodes need be reliable, it is
assumed that alaflures can be detected. The model concentrates on a class of applications concerned with
the manipulation of longilied, on-line data (e.g., airline resatdns system or banking system), where
real-time constraints are notveee, but reliable, &ilable, distributed data is of prime importance. Such an
application domain imposes a number of requirements: (1) continuous service of the system as a whole in
the face of node and networilires; (2) dynamic logical and physical reconfiguration; (§gozational
autonomy of control of nodes according tliaéngy, political, and sociological considerations; (4pé&cit
programmer controlver the distrilution of modules in the system, with changes in the location of modules
having limited, localized effects on the actual code; (5) takingaathge of potential concurrgnin an
application to increasefafiency and decrease response time; (6) maintaining the congisbétiee distrib-
uted data.

The authors found the last requirement the hardest to meet, because corisigthres both coordi-
nation of concurrent aefties while aoiding interference and the masking of hardwaikifes. Atomicity
is provided to support consistgnial a ‘modular reasonably automatic way" (the notion of atomicity has
been used extendy in database applications).

Guardians and handlers are an abstraction of the underlying hardware of a distributed Aystem.
guardian is a logical node of the system, and interguardian communication via handlers is an abstraction of
the physical netark. Themost important difference between the logical system and tscahsystem is
reliability, in that the stable state isvee lost (to some very high probability) and the at-most-once seman-
tics of handler calls (using remote procedure calls) ensure that the calls either succeed completly or ha
no effect.

-2-

Since synchronization of access to shared objects anderg@re epensve implement, only spe-
cial objects calledatomic objects have these propertiesAtomic objects are encapsulated wittatomic
abstract data types, which hare gerations just lik rormal data types, except that the operationsigeo
indivisibility and receerability for the calling actionsA guardian definition implements a special kind of
abstract data type whose operations are handl@reators may be inoked to aeate ne guardian
instances dynamicallyGuardians may be parameterized. The definition also includes the specification of
stable and elatile variables, a regery section to recreate the guardmmolatile state after a crash (e.g.,
creating a database index), and a background section, through which periodic or continuous tasks in the
guardian may be performed.

ARGUS provides separate compilation of modules with complete type checking at compile time.
Guardians and handlers can be used as arguments in local procedure calls and in handlemuailks.
time checking does not rule out dynamic reconfiguratendstributed catalog registers guardians and han-
dlers for binding. The authors provide a somewhat crypi@mple of a simple mail system to shbow
the ARGUS language features could be used.

The authors argue that ARGUSfdik from other languages that address concurrent or distib
programs. Whilghose languages priole "modules that bear a superficial resemblance to guardians" and
some form of intermodule communication based on message passing, the modutesititernal concur
reng/ and contain no provision for data consistgoc resilieng, completely ignoring the problem of hard-
ware failures. Aguably ARGUS supports well consistgneervice, distribution, concurrepcand extensi-
bility. Two aeas are not, lweever, well supported: protection and scheduling. There is no way within the
language to>press constraints as to where and when guardians may be created or whether guardian calls
to handlers are ¢&l. As well, there is no direct support for scheduling incoming calls and providing han-
dler call priorities across an entire node. Only a preliminaagtralized implementation of the language
had been completed when this papersvpublished, although a "real, distributed implementatioss w
underway No information on the éitieng of the existing implementationag gven, and the authors do
not discuss approaches to supporting guardians and actions. The paper suffers from not having enough
implementation information, although presumably the excellent referenceviéss tbis problem.

The authors gue that, rgardless of advances in hardware which may render software compensation
for hardware dilures obsolete, atomic actions are necessary and are a natural model for a large class of
applications.

This paper provides a weand interesting approach to the problem of supporting in a programming
language robust, distributed programming. While the concepts are interestingrindof examination,
one avaits the results of the experimental validation of the guardian and action approach in a true distrib-
uted environment.

