ASHCROFT82
Ashcroft, E.A., Wadge, WV.; Prescription for Semantics; ACM Transactions on Programming Languages
and Systems 4, 2 (April 1982) pp. 283-294.

This paper presents a criticism of the roles which denotational and operational semaatigpiha
cally been gien in the definition of programming languages, and suggests an alierdediegy for their
use.

Semantics is "the study of the associations between programs and the mathematical objects which are
their meaning".Denotational and operational semantics provide different methods of specifying the same
meanings.

When specifying the semantics of a language operatiomaklydefines an abstract machine and the
behaior which results when a program is run on that machine. The semantics of the prognzn iis gi
terms of this behaor. This approach is termed bottom up, since it starts with the machineasksl up to
the language.

Specifying semantics denotationallywalves defining functions which assign mathematical objects
to programs and parts of programs so that the semantics of a module depends solely upon the semantics of
its submodules. Hence, this technique is mogdwhere the operational approach is nohe ley dffer-
ence, hwever, is that denotational semantics specify what is to be computed, whereas operational seman-
tics specify hw it is computed.

The authors contend that theotéechniques are complementaoyt not symmetrical Programming
language features that are simple to define with one method are typically xéoongdéine with the other
Thus, language designers must choose between language features that will be denotationally simple, and
those that will be operationally simple. Most often, all features are chosen to be in one category or the
other resulting in either denotationally or operationally simple languages. Operationally straigintforw
languages are the most common.

Denotational semantics was originally intended as a design tmlever, it was put to use ging
semantics for languages which already existed, and to a large extent has kept avéestgipBBecausef
this descriptte wse of the method with a large variety of existing languages, generality became a main
objective. This is not considered advantageous since the power it affaretstigé language designer the
freedom to include undesirable features in the language. Furthermore, generality wasl @ttie cost
of simplicity.

A prescriptive wse of denotational semantics is considered by the authors to be preferable, since it
gives nore freedom to both the designers and implementors of programming langspégners need
not worry about describing toconstructs will be implemented, and implementors are not constrained by
ary particular implementation.

Thus, the authors suggest that the roles of operational and denotational semantiesdx: rean-
guages should be prescribed using denotational methods, with operational concepts acting only as design
aids. Operationakchniques should then bevéldped to describe (i.e. implement) these languages.



