
ASHCROFT82
Ashcroft, E.A., Wadge, W.W.; Prescription for Semantics; ACM Transactions on Programming Languages
and Systems 4, 2 (April 1982) pp. 283-294.

This paper presents a criticism of the roles which denotational and operational semantics have typi-
cally been given in the definition of programming languages, and suggests an alternative strategy for their
use.

Semantics is "the study of the associations between programs and the mathematical objects which are
their meaning".Denotational and operational semantics provide different methods of specifying the same
meanings.

When specifying the semantics of a language operationally, one defines an abstract machine and the
behavior which results when a program is run on that machine. The semantics of the program is given in
terms of this behavior. This approach is termed bottom up, since it starts with the machine and works up to
the language.

Specifying semantics denotationally involves defining functions which assign mathematical objects
to programs and parts of programs so that the semantics of a module depends solely upon the semantics of
its submodules. Hence, this technique is modular, where the operational approach is not.The key differ-
ence, however, is that denotational semantics specify what is to be computed, whereas operational seman-
tics specify how it is computed.

The authors contend that the two techniques are complementary, but not symmetrical.Programming
language features that are simple to define with one method are typically complex to define with the other.
Thus, language designers must choose between language features that will be denotationally simple, and
those that will be operationally simple. Most often, all features are chosen to be in one category or the
other, resulting in either denotationally or operationally simple languages. Operationally straightforward
languages are the most common.

Denotational semantics was originally intended as a design tool.However, it was put to use giving
semantics for languages which already existed, and to a large extent has kept a descriptive role. Becauseof
this descriptive use of the method with a large variety of existing languages, generality became a main
objective. This is not considered advantageous since the power it affords gives the language designer the
freedom to include undesirable features in the language. Furthermore, generality was achieved at the cost
of simplicity.

A prescriptive use of denotational semantics is considered by the authors to be preferable, since it
gives more freedom to both the designers and implementors of programming languages.Designers need
not worry about describing how constructs will be implemented, and implementors are not constrained by
any particular implementation.

Thus, the authors suggest that the roles of operational and denotational semantics be reversed. Lan-
guages should be prescribed using denotational methods, with operational concepts acting only as design
aids. Operationaltechniques should then be developed to describe (i.e. implement) these languages.


