WILLIAMS80
Williams, M.H.; A Formal Notation for Specifying Static Semantic Rules; Computer Languages, Volume 5,
pp. 37-55.

This paper presents a formal notation for specifying static semantic rules and applies it to a simple
block structured language.

The complete syntax of a programming language has davts - ordinary syntax rules which
describe the structure of the language, and static semantic rules (or syntax interpretation rules) which place
restrictions on the occurrences of identifieByntax rules are quite well understood and a notatisise
which is generally accepted for their specification (BNHpwever, no notation for static semantics has
receved wide acceptance.

There are tw basic types of static semantic notations. Those of the first kind associate information,
such as lists of identifiers, with the variables of the grammhpse of the second category are syntax
directed translation schemes (SDTS's) where actions are associated with the produittsesmethods
are considered less formal because the notation for specifying the actions is typically not formally defined.
The author describes a SDTS notation in which this is formally defined.

The authors notation uses BNF to specify the basic syntax of a language. Each productionvaay ha
actions appended to it, surrounded by brace ltackThenotation for these actions is quitensful. The
data structuresvailable include strings and stacks, as well as ordinangénge Conditionabnd loop
actions are provided, and calls to run-time routines\aitable for dynamic checks.

Static semantic rules may be written with this notation in either a tep-do bottom-up dshion,
often resulting in different placements of the checkke author suggests that a bottom-upwig more
suited to a compiler writer since it reflects theyva compiler works, while the user may find a topato
specification easier to read:he bottom-up approach results in a problem with forward references that a
top-davn approach doesnhave Howeve, this may be remedied either by keeping stacks of forward ref-
erences, or by having advpass compiler.

Finally, the author uses his notation to specify the syntax and static semantics of a simple block struc-
tured language. He concluded that the notation presented has the power to describe the complete syntax of
ary programming language.



