ALBIZURIROMERO84
Albizuri-Romero, Miren B.; A Graphical Abstract Programming Language; ACM SIGPLAN Notices 19, 1
(January 1984) pp. 14-23.

This article presents a graphical language for describing program structures. GAL (for Graphical
Abstract Language) is based on the Nassi-Schneiderman structuvech#ids which provide the usual
looping and conditional constructs and do notval®OTOs. These flo charts do seem much better than
cornventional ones and tend to closely mirror the control structures in the actual programs. For program-
ming in the small, flev charts can more directly represent the progransieriking than a linear stream of
text. Abstractionand modularization are easier at the statemeat, lend it is clearer where more detall is
needed.

Some examples of GAd_structures are:

| gatement | | dowhile | |\ /|
| | N2/
\ 7
|\
—————————————— [thenVelse|

g8
S
S

[then |else|
|body |body]|

There are about 10 different structures whickecall the basic control mechanisms of Pascalsdquence
statements, the boxes are simply put one on top of another; no arrows are used.

GAL programs hee the interesting characteristic that most of the syntax ofettional languages is
eliminated. GAL itself is only an "abstract" programming language, which means that it is an informal
notation that "embodies in a practical and tested form the theory of structured programs". In order to be
used, of course, GAL needs a graphics program to help with infhit is described in the paper
"GRASE--A Graphical Syntax-Directeétditor for Structured Programming," by Miren Bogona Albizuri-
Romero, SIGPLAN Noticesl9, 2 (Feburary 1984) pp. 28-37. GRASE supports Pascal programming, b
the output is shen in the GAL format. Although the user interface to this editor is extremely, foor
demonstrates that GAL structures can be generated automatically.

The actual GAL language is not especially exciting because it maps directlyvientoomal lan-
guages lik RPascal. The interesting part of this articleweaer, is the idea of using graphics to enhance the
programming task. Programs may be easier to construct, understand, and maintain if presented in a graphi-
cal mannerand future research mightvestigate other graphical languages and whether or ngtritadke
programmers more produagi

