FALCONES81
Fdcone, Joseph R.; A Vector Programming Language; ACM SIGPLAN Notices (April 1981) pp. 36-50.

A vector processor is giirromputer which meets the following criterion:

for T(1)=time for a scalar operation
T(n) = time for a vector operation on n operands
and T(1) approx.= T(n) for most n of interest

Languages such as FORTRAN and ALGOléd&een etended to encompass the special vector processor
capabilities. Thiss a poor approach as certain of the vector processor instructions can not be utilized with-
out compromising the statement opeession syntax of the languagA. "vectorising" compiler can be

used to attempt toxe&act parallelism from serial coding, but results are disappointing due to the limited
capabilities of such a compilelt turns out that some of the vector processioistructions are more per-

ful (or high level) than the high eel languages instructions. Languagésve been designed specifically to

deal with vector processorgjththe author wanted to design a language for vector processors that had the
benefits of a language of the ALGOanhily. Some of the design issues were typing, abstraction, generi-
cism, and goto-less programming. The languageldeed was gien the name FLAN.

FLAN's type structure is similar to that of Pascal with types called "groups" beiygsimilar to
enumerated types. FLAN of course allows operations on whole arrays and tges @lkaction of opera-
tors to facilitate sophisticatedegtor computation. Array sizes must be ggleint unless it is specifically
stated otherwise. Operations between an array and a scalagaeitle the scalar used as the operand in
each of the vector operations. Procedures are handleairyastandard manner and the abstractamilf
ity of modules is provided (inherited from Modula).

The author points out that the goto statement is not included in the language for all the standard rea-
sons, but that there is an additional problem peculiaettoy processors. He points out that comparison
operations on whole arrays lead to problems of the following type:

if a[1..50] > b[1..50]
then goto here
else goto there

This leads to possibly mamlistinct instruction streams. But his answer to this problem is a loop structure
with generalised exit statements.

BEGIN
WHEN finished LEAVE area WITH cleanup;
END area;

But this does not seem to selthe problem as the "finished" part could easily be a comparison statement
on two arays. Thusit seems that the problem is that of directingvflof control with comparisons on
whole arrays, not the use of gotos.

FLAN has three assignment statements: direct, interchange and condifibeainterchange state-
ment is added because masomputers ne have an interchange machine instruction. The conditional
assignment does not really belong in this type of language, and its syntax is awkward:

x<-?y>ztheny
else z
rather than
ify>zthenx<-y
else x<-z



-2-

In the section on control structures, the authairagses arrays in the conditional part of an if state-
ment without addressing the problem of creating thstinct instruction streams. It is not clear what
amount of parallellism is allowed on a vector processor andtt® language deals with this probleithe
section on control structures is also a weak one as a result ofaimples used. Some of theamples
have nistakes in them and some are either misleading\a histakes in them.

In the conclusion, the author states his goal as being the design of a language to be used by people
rather than just by scientistsbelieve that FLAN could be a reasonable realization of that aim, but much is
left unclear in the papergearding the control flav and the degree of parallellismaiable.



