GRISWOLD81
Griswold, R.E., Hanson, D.R., and Korb, J.T.; Generators in Icon; ACM TOPLAS 3, 2 (April 1981) pp.
144-161.

Icon is an interesting melanguage for non-numerical computation based on SNOBOL4 and SL5. It
has concise,xressve features, run-time figbility, support for typed and untyped identifiers, heteroge-
neous structures, and automatic typevemions. The syntax is l&kPascal but Icon supports backtracking
and the neel "generators" that makit goplicable to string processing, combinatorial search problems, and
probably Al. The motiation for Icon was to pnde the power of SNOBOL4 for pattern matching in a
more general way so that the backtracking and otheeffol operations can be used on more than just
strings. Also, unlie SNOBOLA4, Icon is intended to be production quality so there are some restrictions for
efficiengy.

The central concept in Icon is the generatogenerator is an expression that can return more than
one value. The firstalue is returned, and if backtracking is needed, then the second value is tried, etc. The
simplest generator is of the form " 1 | 2 | 3 " which returns 1 first then 2 if needed, etc. Another generator is
"elto& by e " (where the by clause is optionallrinally, "!x" goes through all the elements of the
aggregae (list, arrayetc) "x". Generators are a powerful feature. For example, "mod(n, p := 2|3|5|7|11) =0
" tests to see if n is divisible by yaof the first 5 prime numbers. If so, p is assigned thesali and the
expression returns "true". If not, then the expression returns "fail". There ayeothan cases where gener
ators can eliminate explicit loop$or example, "f(i:=1 to 5, j;=1 to 5)'keeps ®auating f with difer-
ent arguments as long as it fails. Theefg" prefix insures that allalues of the generator are used, so
"every i:= 1 to 10 do'replaces the coentional FOR loop. This is much more generalvber, snce
the loop might be “eery 1|3|5|16 do", or ey !x do", etc. Explicit loops may also be eliminated as in
"every sum := sum + IX". There are anféouilt-in string generators, such as Find, UpTo, etc., whichemak
pattern matching easylhere are also scoping mechanisms so thatvaeigenerators can be easily elimi-
nated to control backtracking.

Applications can define theimm generators using the "suspend” command. This is an alernati
form of "return" that allows a sequence of values to be returned. This is sbuilatore general, than the
iterator construct of CLU. When backtracking is performed, sitésisfare usually not undone; only con-
trol is backtracked. There is aveesible assignment operattoweve. This might be used, for example, to
restore a default value if a read fails (returns a string of length 0): "size(param <- read()) "= 0". Icon also
has expandable arrays, tables, and strings.

Icon runs on a number of machines and hagedrto be eful for string processing and other appli-
cations. Its main contriliion is the unified linguistic facilities where goal-directedw@ation is an intgral
part. Backtrackings provided, but its scope is easily controlled by the programmer for maximxitil{fle
ity and eficiengy. Icon seems li& a \ery interesting language and it seems likmight be applicable to
mary different domains. This paper is well written and succeeds in demonstratingvéheaspects of
Icon.

Another article about Icon is Ralph E. Griswold, David R. Hanson, and JoKar®, "The Icon Pro-
gramming Language: An @wiew," ACM SIGPLAN Notices. 14, 4 (April 1979) pp. 18-31, which has
more background for the language and details on the syntax and general features. The generators are the
most interesting part, @ver, and there is sufficient background in the TOPLAS article for them to be
understood.

