
GRISWOLD81
Griswold, R.E., Hanson, D.R., and Korb, J.T.; Generators in Icon; ACM TOPLAS 3, 2 (April 1981) pp.
144-161.

Icon is an interesting new language for non-numerical computation based on SNOBOL4 and SL5. It
has concise, expressive features, run-time flexibility , support for typed and untyped identifiers, heteroge-
neous structures, and automatic type conversions. The syntax is like Pascal but Icon supports backtracking
and the novel "generators" that make it applicable to string processing, combinatorial search problems, and
probably AI. The motivation for Icon was to provide the power of SNOBOL4 for pattern matching in a
more general way so that the backtracking and other powerful operations can be used on more than just
strings. Also, unlike SNOBOL4, Icon is intended to be production quality so there are some restrictions for
efficiency.

The central concept in Icon is the generator. A generator is an expression that can return more than
one value. The first value is returned, and if backtracking is needed, then the second value is tried, etc. The
simplest generator is of the form " 1 | 2 | 3 " which returns 1 first then 2 if needed, etc. Another generator is
" e1 to e2 by e3 " (where the by clause is optional).Finally, "!x" goes through all the elements of the
aggregate (list, array, etc) "x". Generators are a powerful feature. For example, "mod(n, p := 2|3|5|7|11) = 0
" tests to see if n is divisible by any of the first 5 prime numbers. If so, p is assigned the divisor and the
expression returns "true". If not, then the expression returns "fail". There are many other cases where gener-
ators can eliminate explicit loops.For example, "f(i:=1 to 5, j:=1 to 5)"keeps evaluating f with differ-
ent arguments as long as it fails. The "every" prefix insures that all values of the generator are used, so
"every i:= 1 to 10 do"replaces the conventional FOR loop. This is much more general, however, since
the loop might be "every 1|3|5|16 do", or "every !x do", etc. Explicit loops may also be eliminated as in
"every sum := sum + !x". There are a few built-in string generators, such as Find, UpTo, etc., which make
pattern matching easy. There are also scoping mechanisms so that irrelevant generators can be easily elimi-
nated to control backtracking.

Applications can define their own generators using the "suspend" command. This is an alternative
form of "return" that allows a sequence of values to be returned. This is similar, but more general, than the
iterator construct of CLU. When backtracking is performed, side-effects are usually not undone; only con-
trol is backtracked. There is a reversible assignment operator, howev er. This might be used, for example, to
restore a default value if a read fails (returns a string of length 0): "size(param <- read()) ˜= 0". Icon also
has expandable arrays, tables, and strings.

Icon runs on a number of machines and has proved to be useful for string processing and other appli-
cations. Its main contribution is the unified linguistic facilities where goal-directed evaluation is an integral
part. Backtrackingis provided, but its scope is easily controlled by the programmer for maximum flexibil-
ity and efficiency. Icon seems like a very interesting language and it seems like it might be applicable to
many different domains. This paper is well written and succeeds in demonstrating the novel aspects of
Icon.

Another article about Icon is Ralph E. Griswold, David R. Hanson, and John T. Korb, "The Icon Pro-
gramming Language: An Overview," ACM SIGPLAN Notices. 14, 4 (April 1979) pp. 18-31, which has
more background for the language and details on the syntax and general features. The generators are the
most interesting part, however, and there is sufficient background in the TOPLAS article for them to be
understood.

