KRULL81
Krull F.N.; Experience With ILIAD: A High-Leel Process Control Language; CACM 24, 2 (February
1981) pp. 66-72.

ILIAD is a language desloped at General Motors for programming industrial process control sys-
tems. Itwas designed to impnee programmer productivity by making programs easier to write and main-
tain, and to be machine independem. minimize the transition, the language was designed to be similar
syntactically to PL/1.At the time of the article, it had been implemented on 3 16-bit computers, and one
8-bit system.

The compiler for the language produces virtual machine instructions which are interpreted at run
time by a monitar The monitor also controls all I/O and task dispatchifgis results in a system which is
fairly easy to transfer from one machine to another.

The interpretation was found to bdeetive, and worked well in applications which were not time
critical. Thesystem was only sloin the execution of algorithms which were coded in ILIAD. The func-
tions which are carried out by the monitor ran very quidihce it was coded in assembléior Time criti-
cal applications a facility to link in Fortran subroutines is supplied.

Due to the lack of program dgopment tools on the small systems, the compilas wnplemented
as a cross compilefThis worked very well, but the author suggests that a debugging system on the host
computer would hee keen very useful.

The language is structured into modules, which can contain either tasks, which are the unit of concur
reng, or they can contain procedures for the support of the tasks. The modules can each be compiled sepa-
rately This was found to be useful for dgoping standard modules for use in different applications, and it
also eased the load of compiling.

The sequential statements for ILIAD are all fairly standdtaequires that all variable be declared,
and only tvo gorage classes are used. The storage classes arATER({dcal to modules, automatic) and
SHARED (global, static). This resulted in the SHARED type being used more widely than it shald ha
been. Onainique data type is TIME. This is used to keep track of actual time, and there are operators to
set, read, add and subtract TIME variables.

Some of the important features of the language are described bEhe language allows coneur
reng, through the dynamic agtition of tasks. Mutual exclusion is ensured by a LOCK statement which
ensures thexelusive acess to dataSyncronization is carried out by th&VAIT and DELAY statements
which allov tasks to wait foreents, and elapsed time.

The run time monitor handles error conditions in one ofways, if the error is not too w&re, then
an error code is set angeeution continues.The program can then test the status of this code. If the error
is severe, or fatal the system can branch to a user defined exception handling routine.

Some statements (notably the 1/0O statementsyvadjetional prepositions to makihem more read-
able. Thesystem also has a simple preprocessor which allows file inclusion, and some simple iacros.
addition, leywords are not reserved and no implicit typevamsion is done.

The paper claims that the language didaict foromote readability and that the programs were easily
readable by someone familiar with the application after a short exposure to ILIAD.



