MACLENNANS83
Bruce J. MacLennan; Chapter 13, Logic Programming: PROLOG, Principles of Languages: Dedign, Ev
ation and Implementation. MeYork: Holt, Rinehart and Winston, 1983, pp. 499-521.

This textbook has descriptions of a number of interesting languagksling PROLOG. PRLOG,
which stands for PROgramming in LOGic, isexyinteresting programming language originally designed
for Artificial Intelligence vork in theorem proving. It wasvented in 1972 by Phillippe Roussel of the
Groupe d'Intelligence Atrtificielle of the Uniersity of Marseille. Most of the early papers about it were in
French and little notice was taken of PROLOG until the Japanese adopted it for use in their Fifth Genera-
tion Computer Project around 1980. There are a numberfefadif interpreters and compilers for ®R
LOG written in ALGOLW, FORTRAN, Pascal, and RRLOG itself, so it is a "real" language, although it is
not clear whether griarge systems ke been written in it.

There is only one form in PROLOG:

P<-Q

which is read "P is true if Q is true". P and Q are called predicates, and either may béPampty con-
clusion and Q is the goal. If Q is emptiye statement reads "P is truevals" and is used to assert facts. If
P is eampty, then this is taken to be a statement ofdien that the system tries to dispeoly finding
counter examples. For example:

Paent(x,y) <- Father(x,y).
{x is the parent of y if x is the father of y}

Paent(x,y) <- Mother(x,y).
{x is the parent of y if x is the mother of y;

these tw satements together form an "or":
Paent(x,y) if Father(x,y) or Mother(x,y)}

GrandParent(x,z) <- Parent(x,y), Parent(y,z).
{"," here means "and"}

Faher(George, Sue) <-.
{a fact, George is the father of Suavays}

Mother(Sue, John) <-.
{capital letters on variables denote constants}

<- GrandParent(George, x)
{there is no x such that George is the grandparent
of x. The system dispves this by finding such
an x, namely John}

The clauses all va zro or one conclusion and zero or more goals which are "and"ed together using
commas. This is called Horn clause form. Of course, there may be multiple definitions of the same conclu-
sion, and the definitions may be recuesiSince the PRLOG system will often choose the wrong clause
to apply backtracking is an important part of all PROLOG implementations. The process of applying
clauses to sokva poblem is a form of pattern-matching, and is called "unification" in PROLOG.

There is much interest in BROG due to its unique properties. First, it is claimed to be the first
totally non-procedural language to be implemented. It completely separates the logic of programs from the
control of hav the operations should be carried out. Thus, the statements in PROLOG are unordered;



-2-

moving a statement around does not change the meaning of a PROLOG prograngudd iih \&lmost all

other programming languages. ®ROG also has no data structures per se, and all data objects are inher
ently abstract, since you can only access data through the predicates that operate on them. There is no dis-
tinction between input and output variables in PROLOG, so "<- Fib(3,x)" asks for the third Fibonacci num-
ber, and "<- Fib(x,3)" asks for the number whose Fib equal®BOLOG programs tend to be very short

and clearly do not contain extraneous detail, and therefore should be easifytgegpecially since the

control portions are entirely absent). In addition, PROLOG programs seem ideally suited to parallel and
coroutine implementations since there are often a number of different predicates to be tried and there is no
ordering constraints on the various goafgdditionally, PROLOG may be considered a "data flow" lan-

guage since predicates can wait around for input and then operate in parallel.

One of the big questions about ®ROG is whether it can be implementefigéntly. It is clear that
the control aspect of the problem, i.e. which predicates are applied in whichvalideave a ggnificant
impact on gerall performance. The ¢ suggests that some implementations provide external mechanisms
(e.g. a separate language from PROLOG) for specifying hints about the control. It should be emphasized
that these hints cannotfedt the prograns mrrectness; only its performanceowadski points out (see
belov) that data base systems using the relational model foaa long time successfully separated logic
from control, so there is clearly hope for programming in general.

Another problem with PALOG is that there seems to be no way to expregdioe as a fact, e.g.
"there is no x such that P(x)". SimilarBROLOG cannot answer "Is it true that for all x, P(x)" in thiéraf
mative because the absence of a couetample does not imply truth. Clearljne Japanese belie that
these problems can beencome and that RRLOG is the language to use for Al research. The text does a
good job of introducing PROLOG and showing its strengths and apparent weaknesses.

Some of the information in this summary actually comes from Robertowvakki, "Algorithms =
Logic + Control"* CACM 22, 7 (July 1979) pp. 424-436, which explains some more about logic program-
ming and the ideas in PROLOG and provides more insight into the benefits of logic programming in gen-
eral.



