POPEK77

Popek, G.J., J.J. Horning, B.\Wampson, J.G. Mitchell and R.L. London; Notes on the Design of Euclid;
Proceedings of an@M Conference on Language Design for Reliable Software, (edited by MBmh).
Combined issues SIGPLAN Notices 12, 3 (March 1977), Operating SysteriesvRé4, 2 (April 1977),
Software Engineering Notes 2, 2 (March 1977) pp. 11-18.

The programming language Euclid,vdeped from Pascal, & intended to be suitable for program
verification and for system programminghis paperwritten by the designers of the language, describes
the design goals for Euclid, lists some of the principle differences between Euclid and Pascal, discusses the
reasons behind, and consequences wérakof these differences, and summarizes the paataiiccess of
the design effort.

One intent of the language was to imgdhe reliability of the programming process by increasing
the class of compiler-detectable errors, and by requiring that more of the information needed for under
standing and maintenance be included in tRedkthe program. Since it was intended that all Euclid pro-
grams be verified before use (either manuyailfyby machine), it vas felt that this, too, would contribute to
program reliability While these three goals (reliabiliynderstanding and verifiability) are closely latk
verifiability is the only one which can actually be measured, so the paper tends to concentesifican v
tion-related design decisions.

To ome extent, another major goal of Euclid (the construction of "acceptably efficient system pro-
grams") is at odds with the preceding three. While the paper does not discuss these issues in much detalil,
mention is made of features which do contribute to reliability (such as having explicit machine-dependent
modules which contain, or limit, the effect of machine-dependent instructions).

The paper illustrates osome of the goals and assumptions directed the actual ddsigexam-
ple, the assumption that all programsubd be verified, specifically by the axiomatic approach of Hoare
and Wirth, led to the inclusion in the language of a syntax for expressing specifications and intermediate
assertions. Byaving assertions as part of the languagey tiam be included in the compilation, and ifyan
assertion is\aluated to False duringkecution, the program terminates. The same assumption also led to
the exclusion of exception handlers (since verified programs should veotumatime software errors), to
an "unusual" approach to uninitializedriables and dangling pointers, and necessitated that painshe tak
to ensure that there were no discrepancies between the definition of the language and the enforcement by
the implementation (such as is the case with Pascal).

The authors concede that Euclid was not a dramatic advance in the state of the art, but it did demon-
strate at least three important points with respect to reliability:

it is possible to design a useful language with all features verifiable in principle (except, perhaps, machine-
dependent ones)
it is possible to eliminate aliasing in a practical programming language
variant records can be made type-safe

Two of their other design goals (to nekminimal changes and extensions to Pascal", and to keep the
effort "quite limited: only a month or twin duration") were not met, but the authors feel that their final

design only met with success because of the original inclusion of those §patlsfically had their origi-
nal aim been anmore ambitious, themight never havecompleted the design.



