WARREN77

Warren, David H.D., and Pereira, Luis M.; BROG: The language and its Implementation Compared with
Lisp; Proceedings of the Symposium on Atrtificial Intelligence and Programming Languages. SIGPLAN
Notices 12, 8 (August 1977) and SIGARewsletter 64 (August 1977) pp. 109-115.

This article discusses a compiler written for the logic programming language PROLOG. The authors
try to demonstrate that their compiler for @ROG generates code that is at least as efficient as compiled
LISP code. Since fieng is one of the major concerns with PROLOG, this suggests that PROLOG may
be an appropriate language for Artificial Intelligence work.

The first part of this article describes PROLOG for readers who aramdiaf with it. The descrip-
tion is not as good as [MacLennan] omofdski], but it does introduce mgrierms used in PBLOG that
the other tw omit. The authors claim that in BROG, "clear readable, concise programs can be written
quickly with few errors." PROLOG ismuch better in this respect than L)Siace LISP functions tend to
be longerto have much more nesting (parentheses), and to use/ mraspure forms, such as "prog" and
“rplacd". Another advantage of PROLOG is that there is a natural de@agatiantics (English-li& way
to read the statements) in addition to the normal procedural semantics. This makes the programs virtually
self documenting. d design a PRLOG program, one typically designs a procedure to check for some con-
dition. This procedure will then also selfor that condition.

The compiler produced by the authors was written entirely in PROLOG. The original veeson w
bootstrapped from an earlier PROLOG interpret@e compiled code as for the DEC-10 which is well
suited for PROLOG due to its imgensve indirection instructions. The compiler getglareficiency gains
by allocating space for mosarables on tw gacks, rather than on a heap, so space is easily reclaimed
when backtracking. It turns out that the full recugsbacktracking nature of PROLOG is rarely used, so
most statements can be veryxpensve. Special (non-PROLOG) control statements are provided that
allow the programmer to tell the system when clauses are used in this restagtéduother cleer idea is
indexing the principal argument overy clause so that the it can be found by a computed goto or hashing
rather than searching. The result is a system ttegues operations at 1/2 to 2.6 times that of compiled
LISP code for the DEC-10, and only takes 5K words for data for the backtracking trail and the 2 stacks.

This article does not address the problems @f twtell the system which clauses to use first, or
whether top-down or bottom-up control will be more efficient in the current program. Other artides ha
suggested that this is a hard problem for PROLOG implementations. In additias,nbtvmade clear tvo
appropriate PROLOG was for writing large programs,\v@néow large the compiler was. Much other
information that would beery interesting also has been omitted, but the data provided was very under
standable and well writtenUndoubtably this article helped catnce the Japanese that PROLOG was a
viable alternatie to LISP for Al programming in the future.



