WICHMANNS84
Wichmann, B.A.; Is Ada too Big? A Designer Answers the Critics; CACM 27, 2 (February 1984) pp.
98-103.

Ada is undoubtedly one of the more comérsial computer programming languages todBany
people hge «iticised it for being too laye and/or complicated. This article, written by one of the members
of the Ada design team (although not iry afficial capacity"), attempts to address maifthe criticisms.

As Wichmann is quick to point out, the language was ordered by the United States Department of
Defence, and, since theeem satisfied with Ada, then by at least one criterion the language is a success.
As is alvays the case whenvauating a computer language, the major design goals, and the intended
area(s) of application, must be taken into account.

Much of the criticism related to Ada seems to implicitly assume that, indh#svef economist E.F
Schumacher'small is beautiful".However, is this an appropriate criterion for computer programming lan-
guages? Th®epartment of Defence wanted a single language appropriate for a large applications area:
this necessarily led to a large languagtaving pointed out this fact, Wichmann addresses thirteen specific
size-related criticisms, showingwdat least in his opinion) the criticisms are sarhat misguided or inap-
propriate. Br example, to counter the claim that the language form would be easier to remember if Ada
were smallerWichmann points out that Ada has only 62 reserved words, compared to 260 in COBOL.
Similarly, while agreeing that it is easier to teach a smaller language, he contends that Adat masier
for academics to demonstrate such concepts as abstract data types, conaendemmr-handling, since
they all exist within a single language.

The criticisms discussed almwere, for the most part, rather generic in nature. Other criticisms tend
to be more specific: tigeare proposals to reme Pecific features from Adawichmann divides these pro-
posals into three disjoint sets:

1) changes which (he feels) would be "disastrous to Ada"
2) changes which are "possible but of questionable value"
3) changes which are "practical and worthwhile"

Those features which he places into the firstguate (disastrous for Ada), he does so because he
feels that such changes would "comérge the requirements of the language", turning Ada into a com-
pletely different language. These features includption handling, concurrent programming andadif
initial values for types.

He concedes that some of the suggested eliminationklvenly "marginally change Ada", but con-
tends that manare simply a matter of personal preferen@éis includes such features as fixed poatilf
ities, more than a single exception, and separate compilation capabilities.

Finally, he dentifies some proposed changes with which he agRehaps it is not surprising that
this is the smallest cajery, containing only four specific features: unnamed array types, "when" conditions
in exit statements, goto statements (although he points out that Ada has restricted the capability of the goto
from that of Pascal), and entry families.

Wichmann concludes by agreeing that it is very possible t@ mdl simpler by reducing ita€ili-
ties. Havever, he questions whether the resulting language will be as useful to the intended user commu-
nity. He points out that, wen if every one of the "possible" changes were made, the resulting compiler
would only ne twenty per cent smalldf someone \ants just a subset of Ada, that is all thaytheed use:
no major advantage is to be gained by eliminating those features which that particular user does not require.

While the article is undoubtedly somewhat biased, it does seem to be well thought out, and intelli-
gently written. Some of the "justifications" may lack substanaehb does not seem to deliberately mis-
lead nor distort issues. The design of such an ambitious language mrigeba a very trying>ercise.

As Wichmann says, "in ten years, we will knbow Ada should hee been designed. It is the decisions we
made in the original design phase and the alterations we toddy though, that really count.”



