
WIRTH83
Wirth, N.; The Programming Language Modula-2; Institut fur Informatik, Report Nr. 36 IfI ETH Zurich,
1980, pp. 1-25. Also appears as pp. 139-170 of Wirth, N.; Programming in Modula-2; New York: Springer-
Verlag, 1983.

Modula-2 is a programming language developed between 1977 and 1979 by Niklaus Wirth as a suc-
cessor to Modula and Pascal. Modula-2 includes most of the features (good and bad) of Pascal, with some
additional ideas on modules most of which arebased on the Mesa language developed at Xerox PARC
where Wirth visited in 1976.

Modula-2 adds a number of features to Pascal. First, "A more systematic syntax" which means that
ev ery structure starting with a keyword ends with a keyword. The result is that a Modula-2 program has
fewer BEGINs than Pascal, but many more ENDs. There are some other minor changes in the syntax. For
example, each clause of a CASE statement ends with a "|" instead of a ";" and there may be an "ELSE"
clause in a CASE; records can have more than one variant part; "POINTER TO Foo" is used instead of
"ˆFoo"; "AND" and "OR" exit as soon as the final value is known (rather than always evaluating all
clauses); constant expressions are supported as are array parameters with unspecified bounds in procedures;
and there is a CARDINAL type which is for positive integers. Next, there are low lev el features that are
supposed to make it easier to build system software. These include the ability to easily get around the rigid
type rules, the ability to do pointer arithmetic, and a built-in function to get the address of a variable.

Procedure types, variables and parameters were also added to the language. Whereas this is a very
useful feature, the syntax does not seem to fully support it. A function with no parameters can be invoked
by "Foo" (rather than "Foo()" in Mesa) which seems to make it ambiguous for a function that returns a
function whether "Z := Foo" means Z gets the function Foo or the function that Foo returns.

The most important addition to Modula-2 is the concept of a Module.Modules are scoping mecha-
nisms that allow certain variables, types, constants and procedures to be explicitly exported while others are
protected from outside use. Modules also have explicit imports so it is clear exactly what the module uses.
To avoid name conflicts, identifiers may be qualified with the name of the module that they come from.
Pointers can also be exported opaquely so that clients can pass them to routines but cannot dereference
them. Modules can therefore be used to provide abstraction mechanisms and information hiding as required
in good structured programming techniques.Associated with modules is the ability to have separate com-
pilation. The export section of a module can be copied into a separate "definition" file which is imported by
other modules using that module. The implementation can then be compiled separately.

Modula-2 has eliminated the powerful I/O primitives READLN and WRITELN from Pascal. With
modules, the desired read and write procedures can be implemented separately and used in all application
programs, but the ability to mix outputs or inputs of different types is lost. This will probably be fairly
inconvenient for many programmers.

Finally, Modula-2 provides multiple processes. These are implemented as loosely coupled co-rou-
tines with explicit programmer-defined transfer back and forth. It appears to be a very low lev el mechanism
since when creating a new process, the creator must know exactly how much memory to allocate for the
new process’s stack. Processes in Modula-2 should be easy to implement, however, and the more complex
schemes such as monitors and signals can be written using it. Wirth also claims that the simple mechanism
is often all that is needed, especially for device drivers for simple operating systems such as those for per-
sonal computers.

Although little in Modula-2 seems to be original, it seems to be a better and more powerful language
than Pascal. Since many groups that use Pascal need to extend it in non-standard ways to add features like
those in Modula-2, the wide acceptance of Modula-2 may allow for much better standardization of software
industry-wide. Modula-2 does have some problems, but, in general, it seems to be powerful enough to be
useful without extensions but simple enough to implement easily, so it is possible that it may become
widely used on personal machines and elsewhere.


