WIRTHS83

Wirth, N.; The Programming Language Modula-2; Institut fur Informatik, Repor8@&ifl ETH Zurich,
1980, pp. 1-25. Also appears as pp. 139-170 iofh\WWN.; Programming in Modula-2; MeYork: Springer
Verlag, 1983.

Modula-2 is a programming languageveleped between 1977 and 1979 by Niklaus Wirth as a suc-
cessor to Modula and Pascal. Modula-2 includes most of the features (good and BadpbfwWith some
additional ideas on modules most of which dr&sed on the Mesa languagevdigped at Xerox RRC
where Wirth visited in 1976.

Modula-2 adds a number of features aséal. First, "A more systematic syntax" which means that
evay structure starting with aegword ends with a &word. The result is that a Modula-2 program has
fewer BEGINs than Pascal, but nyamore ENDs. There are some other minor changes in the symtax. F
example, each clause of a CASE statement ends with a "|" instead of a ";" and there may be an "ELSE"
clause in a CASE; records carvblarore than one variant part; "POINTEROTFo0" is used instead of
""Foo"; "AND" and "OR" exit as soon as the final value is known (rather thaayslesaluating all
clauses); constant expressions are supported as are array parameters with unspecified bounds in procedures;
and there is a CARDIAL type which is for positie integers. Next, there arevolevd features that are
supposed to makit easier to build system softawe. These include the ability to easily get around the rigid
type rules, the ability to do pointer arithmetic, and a built-in function to get the address of a variable.

Procedure types, variables and parameters were also added to the language. Whereasetlyis is a v
useful feature, the syntax does not seem to fully support it. A function with no parameters cenkdae in
by "Foo" (rather than "Foo()" in Mesa) which seems to endkambiguous for a function that returns a
function whether "Z := Foo" means Z gets the function Foo or the function that Foo returns.

The most important addition to Modula-2 is the concept of a Moddledules are scoping mecha-
nisms that allev certain variables, types, constants and procedures to be explicitly exported while others are
protected from outside use. Modules alseehedplicit imports so it is clear exactly what the module uses.

To avoid name conflicts, identifiers may be qualified with the name of the module thatotme from.
Pointers can also bexgorted opaquely so that clients can pass them to routines but cannot dereference
them. Modules can therefore be used tosiole® abstraction mechanisms and information hiding as required

in good structured programming techniquéssociated with modules is the ability toveaseparate com-
pilation. The &port section of a module can be copied into a separate "definition" file which is imported by
other modules using that module. The implementation can then be compiled separately.

Modula-2 has eliminated the powerful 1/0O primi READLN and WRITELN from Pascal. ith
modules, the desired read and write procedures can be implemented separately and used in all application
programs, but the ability to mix outputs or inputs of different types is lost. This will probabbirlye f
incorvenient for mag programmers.

Finally, Modula-2 preides multiple processes. These are implemented as loosely coupled co-rou-
tines with explicit programmaedtefined transfer back and forth. It appears to be a verield mechanism
since when creating a weprocess, the creator must kma&xactly hav much memory to allocate for the
new processs dack. Processes in Modula-2 should be easy to implememévan and the more comple
schemes such as monitors and signals can be written usinigtiit.al/8o claims that the simple mechanism
is often all that is needed, especially fovide drivers for simple operating systems such as those fer per
sonal computers.

Although little in Modula-2 seems to be original, it seems to be a better and m@dydanguage
than Pascal. Since magroups that use Pascal need to extend it in non-standeysl tov add features &k
those in Modula-2, the wide acceptance of Modula-2 mawdtho much better standardization of saite
industry-wide. Modula-2 does ¥ ssme problems, but, in general, it seems to be powerful enough to be
useful without extensions but simple enough to implement easilyt is pssible that it may become
widely used on personal machines and elsewhere.



